
DB2 Everyplace powering SAP mobile solutions

Abstract

This article is intended for developers who design and implement applications for the SAP
Mobile Infrastructure using the IBM DB2 Everyplace database as persistent storage. SAP
Solutions for Mobile Business such as SAP Mobile Sales R/3 (MSR) or SAP Mobile Direct
Store Delivery (DSD) are using the DB2 Everyplace database already today. For those SAP
solutions DB2 Everyplace offers rich query and data modification capabilities which provide
you the right relational infrastructure needed to process your data on the mobile device
efficiently. A short primer on the DB2 Everyplace database engine architecture is providing
the foundation needed to understand the performance tuning methodologies. It is described
how a good index and query design improves the performance and how it will speedup
particularly complex queries. In addition, the JDBC and .NET programming interfaces of
DB2 Everyplace are introduced. Especially for the JDBC driver hints are given to keep the
memory consumption as small as possible.

Table of content:

1. Introduction
2. Functional scope
3. Architecture

3.1. The JDBC Interface
3.1.1. Architecture of the JDBC interface
3.1.2. Hints for using the JDBC interface of DB2 Everyplace

3.2. The .NET interface
3.3. A short primer on database architecture
3.4. Optimizer considerations

4. Performance Tuning
4.1. EXPLAIN
4.2. Performance tuning using indexing techniques

4.2.1. Bi-directional indexes
4.2.2. Index prefix scanning
4.2.3. Supporting join conditions with indexes

4.3. Design considerations
5. Summary
6. About the author
7. Bibliography

This whitepaper provides a short description of the functional scope of the IBM DB2
Everyplace mobile database as starting point. The main part will be organized from a
developer’s point of view starting with the architecture of the JDBC and the .NET interface.
Then the underlying architecture of the database engine will be briefly outlined in order to
gain some common ground on which the performance tuning guidelines can be explained.
Those guidelines will help you understand how you can modify certain types of queries in
order to achieve better performance. With this knowledge you will be able to tune the data
access layer of your mobile applications.

A second whitepaper is scheduled for end of Q1/early Q2 2005. The purpose for the second
one is to show best practices for the persistence API provided by SAP Mobile Infrastructure.

1) Introduction

Applications running on mobile devices such as PDAs and smart phones need to process data.
The applications developed for such devices cover different business areas - for example
mobile asset management, service technician solutions, sales force automation and supply
distribution, just to name a few. But they share some common needs for data processing:

• search and query capabilities
• efficient data modification capabilities ensuring and maintaining data integrity
• reporting capabilities using complex join queries
• data encryption
• persistent storage with zero admin work for mobile end user

Since data used in this processing is synchronized with relational backend databases the
relational data model and data access techniques might be reused. It might be possible for
example to re-use parts of the data access related logic of an application using DB2 UDB in a
solution using DB2 Everyplace database on a mobile device. This benefit can be gained if you
use the relational IBM DB2 Everyplace mobile database which is specifically designed for the
mobile and embedded application environment with minimal storage requirements. DB2
Everyplace mobile database provides high performance, a reliable, persistent, transactional
and thread-safe storage for your data on mobile devices, without the need of a database
administrator due to its zero admin design. Rich query and data modification capabilities offer
you the relational infrastructure you need to process your data on the device efficiently.
Industry-standard programming interfaces allow rapid application development. Encryption
on a per table basis can be used to secure your business success by protecting your
confidential information in case a mobile device gets lost or stolen. Customization of your
applications for different geographies is easy through the support for all major languages.

2) Functional scope

IBM DB2 Everyplace mobile database is designed for mobile devices such as PDAs, smart
phones and for embedded solutions. It is part of the 3-tier DB2 Everyplace data
synchronization solution. The focus of this article is the mobile database and the
synchronization part of DB2 Everyplace will not be explained here. The database engine is
available for the following platforms: Symbian, PocketPC, Win32, embedded Linux, Linux,
QNX Neutrino and Palm. The database engine allows data storage on external media such as
SD card or MicroDrive. The programming interfaces supported are the Call Level Interface
(CLI) and ODBC for C/C++, the JDBC interface for Java and the .NET interface for
development support within the .NET framework. Taking the limited computing power into
consideration and aiming at the lowest resource consumption possible only functionality most
relevant for mobile databases has been included (which is a subset of the SQL 92 standard). In
addition, the database engine supports Single Byte Character Sets (SBCS), Double Byte
Character Sets (DBCS), and UNICODE where available. The database is globalized for major
languages: English, Spanish, French, German, Italian, Czech, Polish, Brazilian Portugese,
Slovak, Hungarian, Japanese, Korean, Traditional Chinese and Simplified Chinese, Hebrew
and Arabic.

DB2 Everyplace database is a relational database system capable of relational operations such
as joins, GROUP BY and ORDER BY. In addition it supports single and multi-column

primary keys, aggregation and scalar functions, and scrollable cursors. Advanced indexing
capabilities can be used to increase the performance of queries significantly. With V8.2,
support for multiple concurrent connections to the same database from within the same
process was added supporting the isolation levels UR, CS, RS and RR1 during transaction
processing. A short – but not complete – summary of the supported features is below:

• CREATE/ALTER/DROP TABLE
• CREATE/DROP INDEX (bidirectional, single and multi-column)
• Check constraints, identity columns, DEFAULT VALUE
• Transactional, concurrent processing with isolation levels UR, CS, RS, RR
• INSERT, INSERT with subselect, DELETE and UPDATE
• SELECT with support for joins, DISTINCT, GROUP BY and ORDER BY clause, IN

and LIKE predicate
• scrollable cursor support
• Aggregate functions like MAX, MIN, AVG, SUM, COUNT
• Scalar functions like RTRIM2, LENGTH, DAY, TIME, TIMESTAMP
• EXPLAIN statement
• Encryption support on a per-table basis

After this short coverage of the functional scope supported by DB2 Everyplace mobile
database, the remainder of this article will be a developer’s approach to the database: First the
programming interfaces will be introduced in order to be able to use the database. Second
performance tuning guidelines will be given based on some basic understanding on the
database architecture which will be introduced as well.

3) Architecture

3.1) The JDBC Interface

3.1.1) Architecture of the JDBC interface

J2ME is the Java platform enabling mobile devices for Java. Multiple vendors are providing
JVMs for mobile devices and offer therefore a runtime environment for Java applications in
the mobile solution market (IBM offers with the J9 JVM a J2ME platform available for
almost all device platforms in the mobile market). DB2 Everyplace database offers support
for Java applications on mobile devices by providing a JDBC programming interface. The
JDBC interface of DB2 Everyplace implements most of the functionality of JDBC 2.1 with
some minor exceptions implied by the mobile computing environment with constraint
availability of resources. Figure 1 shows the architecture of the core classes and interfaces of
the JDBC API contained in the java.sql.* package.

The basic steps to use the DB2 Everyplace database from a Java application are loading the
JDBC Driver, opening a Connection to the database and then using a Statement or a
PreparedStatement for performing the required SQL operations. The Connection interface
defines methods for handling connections. The DatabaseMetaData interface provides
methods to retrieve global information such as database version, supported functionality (like
batch updates) and upper limits (like the maximum row size or the maximum length of a table

1 UR = uncommited read, „dirty read; CS = cursor stability; RS = read stability; RR = repeatable read
2 Note that LTRIM or TRIM is not supported. The reason why RTRIM is supported is to cut off trailing blanks
of CHAR columns which are added after the string value inserted and are therefore on the right side.

name). The Statement interface (and its extending interfaces PreparedStatement and
CallableStatement) provides the methods for sending SQL to the database and creating the
result sets. If SELECTs are issued then the results are retrieved using instances of the
ResultSet. DB2 Everyplace supports scrollable ResultSets with relative and absolute
positioning. Information about the number of columns and the corresponding data types of a
ResultSet can be obtained using the ResultSetMetaData. If an error situation or a situation
requiring a warning is encountered, a SQLException or SQLWarning will be thrown.

3.1.2) Hints for using the JDBC interface of DB2 Everyplace

The DB2 Everyplace JDBC driver is a Type 2 driver mapping Java to the CLI interface. The
driver therefore consists of two parts: A set of pure Java classes plus a JNI bridge to the CLI
interface. Many CLI and JDBC concepts are similar, thus a JDBC Type 2 driver could be
considered more like a wrapper module. For certain JDBC classes like Statement or ResultSet
only minor parts are implemented in the Java classes which are therefore small and simple.
This means most of the memory is allocated by the native code invoked by the JDBC methods
using JNI and this memory allocation happens outside the Java heap memory space. However,
the garbage collector (GC) prioritizes objects according to their size in the Java heap memory
space and memory outside this area is invisible to the GC. Therefore the GC cannot determine
correctly the size of instances of the Statement or the ResultSet class and considers them low
priority for cleanup. This is crucial to know because due to this you should write “clean” code
in order to avoid relying on the GC. “Clean” code means to call for all objects like

Figure 1: Relation of the JDBC 2.1 core classes and interface of the java.sql.* package

ResultSets, Statements or PreparedStatements the corresponding close() method to ensure that
the used memory outside the Java heap memory will be freed before the GC starts collecting
unreferenced objects. As a good practice, you should write finally-blocks for all try-catch-
blocks where an SQLException could be thrown to make sure the close() method is also called
in the error case (see item 3 below for a code snippet)

If you are developing Java applications using the DB2 Everyplace database through the JDBC
interface, there are some things you should consider from the Java perspective:

1. Do not instantiate the DB2 Everyplace JDBC driver like this:
try {

Class.forName(“com.ibm.db2e.jdbc.DB2eDriver“).newInstance();
}
catch (Exception e) {

// error handling
}

This way you create an instance of the DB2eDriver which is not needed. This just
generates unnecessary work for GC. Instead, remove the call for newInstance() to
avoid useless allocation and freeing work of memory as shown below:

try {
 Class.forName(“com.ibm.db2e.jdbc.DB2eDriver“);

}
catch (Exception e) {

// error handling
}

2. In SELECT statements you should specify only the columns in the column list which
you really need. The reason for this is that on mobile devices the price for object
instantiation is hitting the overall application performance even more than on desktop
computers. DB2 Everyplace is instantiating the object representing the column values
in a single row of the ResultSet only when the column in the row is accessed. Imagine
you iterate through the ResultSet of a SELECT * FROM <myTable> where myTable
has for example 60 columns and 2000 rows but for your application you actually need
only 4 columns of them. Then you are paying the performance penalty for 56 * 2000 =
112.000 object instantiations which are not needed. This will cost you significant
runtime on PDAs – especially if the involved data types require BigDecimal
(DECIMAL type in database) or String (CHAR or VARCHAR type in database)
object instantiation in Java and the removal of these by the GC. For the above
example, you should explicitly specify the desired columns: SELECT col_x1, col_x2,
col_x3, col_x4 FROM <myTable>.

3. You need to ensure that you are invoking for all instances of Statement,
PreparedStatement and ResultSet and Connection the corresponding close() method,
even in an error case. This way you ensure that all associated memory will be properly
released. An example for a code structure achieving this could look like:

try{
 //code here which could throw a SQLException
}
catch(SQLException sqlEx){
 //do error handling here
}
finally
{
 try{
 if(rs != null)
 { rs.close(); }
 if(stmt != null)
 { stmt.close(); }

}
catch(SQLException){
 //do error handling here
}

}

At the end of the try-block you should try to close instances of ResultSets or
Statements to release the memory. With the finally-block as shown above you also
ensure that the instances of ResultSet or Statement variables are closed and the
memory is released in case of error.

4. By following CLI the JDBC API has slightly different counting semantics compared
to what you are used from Java. If you intend to obtain the first column of a ResultSet,
you start counting at 1 (whereas in Java the first object in an array would be addressed
using 0).
This example get the first column of the ResultSet using rs.getString(1):

rs = stmt.executeQuery("select tname, numcols from DB2eSYSTABLES");
while(rs.next())
{

tName = rs.getString(1);
//do some stuff here

}
This example get the first entry from an array:

name = nameList[0];
5. Result sets are not closed automatically if a commit or a rollback is called. They are

kept open across transaction boundaries. Therefore you need to call the close() method
in order to close them.

3.2) Architecture of the .NET interface

DB2 Everyplace mobile database has a .NET interface supporting the Microsoft .NET
Standard Framework for Win32 devices as well as the .NET Compact Framework for PDAs
running PocketPC. With the .NET managed providers you can write applications in languages
such as C#. Within the .NET framework the cornerstone for working with (relational) data
and databases is a library known as ADO.NET. At first glance, it looks very much the same
like the predecessor technology ADO. However, ADO is built around the concept of record
sets whereas ADO.NET has as key element, the DataSet, which can be used to model an
entire database with tables and relationships among tables. In addition, ADO.NET also
abstracts other database concepts like connections and statements into classes. The most
important property of the DataSet is that it represents a disconnected data architecture. Once
the data is retrieved and stored in the DataSet, the connection between the database and the
DataSet is closed. Further, the design objective of ADO.NET is a better XML integration and
a better update control compared to the predecessor technology.

The architecture of the DB2 Everyplace .NET managed providers as shown in Figure 2 is the
same for the .NET Standard and the Compact Framework. The .NET manages providers of
the DB2 Everyplace support through the DB2eDataAdapter the DataSet (disconnected mode)
and the DB2eDataReader (connected mode). The connection between the disconnected
DataSet and the DB2 Everyplace database is established through the DB2eDataAdapter.
Changes done to the data in the DataSet can be written back to the database by re-establishing
a connection through the DB2eDataAdapter. This means, that you need a connection in
disconnected mode only for initially populating the DataSet and if you intend to write any
changes done to the data back to the database. In between you can work with the data without
keeping a connection to the database open (hence the name “disconnected” mode). In case
you need to scroll through a query result in a connected fashion conceptually similar to what
is provided through the JDBC ResultSet you need to use the DB2eDataReader. This class
offers support just for forward-only scrolling. If you use the DB2 Everyplace database
through JDBC, you have the advantage of absolute and relative cursor positioning in both
directions. Opposite to the DataSet, during the entire time you use the DB2eDataReader a
connection to the database must stay open. A connection to the database is provided by the

Connection class. Using the Command class you can tell the database what you intend to do.
Assigning the SQL you intend to have executed to a member of this class is basically the way
to prepare SQL statements for execution. The DataSet and the DataReader are very well
integrated with the GUI components of the .NET framework such as the DataGrid or ListBox.
This means you can bind query results to such GUI components fairly easily and display the
data from the database with a few lines of code.

Figure 2: Architecture of the DB2 Everyplace .NET managed providers

3.3) A short primer on database architecture

In this subsection I will briefly introduce the architecture of the mobile database engine from
a high-level view. The main components and the core function of each component will be
explained. In Figure 3 you can see the general outline of the database engine architecture.

For application programming DB2 Everyplace offers various interfaces such as CLI, ODBC,
JDBC and .NET. These fulfill industry standards. The JDBC and .NET interface were briefly
explained in previous sections. I left out the CLI interface because it is not in the scope of this
article. Beneath the application programming interfaces is the database kernel which consists
of two major components:

• SQL Runtime Environment (SQLRE)
o SQL Compiler

 Parser

 Semantics
 Compiler
 Optimizer

o Interpreter
• Data Management Services (DMS):

o Database Management Subsystem
 Index Manager
 Record Manager
 Buffer Manager

o Operating System Services:
 File System Access Layer
 Memory Access Layer

Figure 3: DB2 Everyplace database architecture

The first component invoked from the SQL compiler is the parser which is responsible for the
syntactic validation of SQL statements. Syntax errors (SQLState 42601) can be detected at
this level. In case the SQL statement is syntactically correct then the semantics component
performs type checking and verifies that all database objects referenced by the statement
exist. The next task performed by the compiler is to build an access plan – the executable
form of a SQL statement. The access plan describes what the steps are the database needs to
perform in order to execute the SQL statement. The access plan contains for instance
information regarding the order of tables accessed, indexes used for evaluating conditions or
if the result set is ordered in memory or using a temporary table on the file system .
The optimizer, as the name implies, improves the access plan generated by the compiler in
order to achieve a better query execution time. During this step for example redundant
conditions will be removed and index selection will be performed. Depending on your queries
as part of a good database design you should consider index creation. If there are no indexes
available obviously the optimizer has nothing to consider for index selection. However, if

there are indexes available, the flip side of the coin is that the way you write your query
influences index selection. You will see in the following subsections that a crucial part in
writing SQL statements which perform well is to structure them in a way that from the
available indexes the most beneficial regarding performance pass the requirements for being
selected.
Once the access plan is generated, the SQL interpreter executes the access plan by calling
services of the Data Management System. Note that for prepared statements the generated
access plan can be reused with a different set of parameters in which case the steps for
building and optimizing it are omitted. The basic tasks of a SQL compiler are conceptually
comparable to a Java compiler. The Java compiler also validates the syntax of a Java program
first, and then generates a parse tree and, performs type checking. Then the Java compiler
generates the Java byte code (the “access plan” for your Java program) and also removes
unnecessary loops, variables, conditions, etc. during this step. The Java interpreter (= JVM)
can then execute the compiled class files.
The Data Management Subsystem has four major components: The index manager is
responsible for accessing, modifying and maintaining the index tree structures. This
component is always involved if indexes are supporting the SQL statement execution. Tables
are stored on disk in pieces of the same size called data pages. The record manager handles
row extraction and compression from or to the data pages. Since file system operations are
slow, the database manages a certain amount of memory called buffer pool to keep frequently
accessed data pages in memory for faster access on subsequent operations. The buffer
manager manages the buffer pool and controls when data pages are read from the file system
or flushed to it if space needs to be freed in the buffer pool.
The Operating System Services contain the components for accessing the file system, the
device memory or other functions like encryption.

If you are interested in more details on the architecture of DB2 Everyplace mobile database,
the article listed as item 6) in the bibliography is providing them for DB2 Everyplace V8.1.
Note that some minor details are outdated for V8.2 though.

3.4) Optimizer considerations

Today, the most common implementations of SQL optimizers are either cost-based optimizer
or rule-based optimizers. Neglecting many details, I just sketch the main differences between
them from a top-level view:

Access plans received by a SQL optimizer which performs cost-based optimizing is
transformed into another equivalent SQL statement regarding the result but with a better
performance. For the internal optimization of the SQL a cost-based optimizer uses for
example statistical information on tables and other database objects. Depending on the
implementation even non-database statistics like performance characteristics of hard drives
might be considered. The first huge benefit of this design is that the developer needs to worry
less on the SQL statement used in the application because the SQL optimizer will be able to
transform it in many cases to a faster performing one. The second benefit is that cost-based
optimizers often have a feature supported called join-reordering (I will briefly explain this
very powerful feature in the performance tuning section). The first drawback of this design is
that a database administrator is needed to keep the statistical information used by the SQL
optimizer up to date. Failure to do so can result in poor performance because during the
access plan optimization the SQL optimizer can not make proper decisions anymore due to
using statistical information which is outdated. The second drawback is that an access plan
generated by EXPLAIN during development time might be different from the access plan

generated and used at execution time due to different statistics at development and execution
time. This means that a developer can not control anymore3 that a SQL statement is
performing well at execution time since the statistics at execution time on which the optimizer
decisions are based are unknown (some backend database vendors today support or currently
add features for their cost-based SQL optimizers to give the developer some of this control
back). Cost-based optimizing is a widely used technique in many commercial databases
available for backend.

Rule-based optimizers as the name implies just use rules without considering statistical
information. The first benefit of this design is that the developer has full control of how the
SQL statement will be executed at runtime because the access plan reviewed with EXPLAIN
at development time and the access plan used at execution time will be the same. The second
benefit of this design is that no database administrator is needed because there is zero admin
work to do in order to generate and maintain statistics. Rule-based optimizers also have
drawbacks: First of all, the developer has a much higher responsibility in anticipating the data
load4, in writing table and index designs and for the SQL statements which lead to good
performance because the rule-based optimizer can not cover up for mistakes as much as a
cost-based optimizer can. The second drawback is that join-reordering is usually not
supported. The binary footprint of rule-based optimizers is usually smaller than the footprint
of cost-based optimizers due to the fact that the complexity of rule-based optimizers is usually
lower. Since storage space on mobile devices is small this makes rule-based optimizers also a
feasible choice for the mobile computing environment.

Since DB2 Everyplace is a database for the mobile environment it has as a rule-based
optimizer SQL optimizer with the benefits and drawbacks as outlined for rule-based opti-
mizers above.

4) Performance Tuning
Since many mobile devices like smart phones or PDAs have very limited computing power,
each part of an application needs performance tuning if the application should run fast on such
devices. This includes of course the code dealing with the database. Assuming a good entity-
relationship model for the data stored in the database additional steps like feasible index
creation and SQL statement tuning for optimizing the index usage needs to be done. This
section provides you with the information how DB2 Everyplace database takes advantage of
indexes and helps you identifying where indexes are useful to increase performance using
certain tools.

4.1) EXPLAIN

As outlined in the architecture section the SQL compiler generates an access plan. This plan
describes how a SQL statement is executed and includes information on used indexes or
temporary table creation for sort operations. In order to improve query performance you
might need to create indexes or restructure your query. However, you need access to this
information in order to so. The EXPLAIN provides this information by generating the access
plan for a query without executing it and saving it into a DB2 Everyplace database table
called DB2ePLANTABLE. Once you reviewed it you might change the query or create an
index and re-execute the EXPLAIN for the SQL statement to see how the modifications you

3 In many cases due to the cost-based optimization the developer has the freedom to care less about it.
4 The data load might influence significantly certain queries.

did affect the access plan. Iterating through these steps might be necessary until you find a
well performing solution.

You can issue an EXPLAIN for SQL statements through the DB2eCLP command line
processor. The DB2eCLP is shipped with the DB2 Everyplace. You can also execute the
EXPLAIN statement through one of the programming interfaces. Note that the EXPLAIN
statement is only supported on Win32 and Linux running on the x86 architecture.

Before we start looking into details of performance tuning you should make yourself familiar
with the EXPLAIN statement. If you would like to see if indexes are used you could review
the access plan by querying the DB2ePLANTABLE. In case your SQL statement has an
ORDER BY-clause you can also see if the ordering is supported by an index and done in
memory or if the ordering is lacking index support and is instead performed in a temporary
table on the file system which is much slower. Analyzing the access plan gives you
information how you should change your query or index design to improve query
performance. Since you are dealing with a database using a rule-based optimizer the access
plan at execution time will be the same as you are seeing at development time5 leading to the
following rough rules of thumb:

• Good access plan at development time leads to good performance and the same access
plan at runtime

• Poor access plan at development time leads to poor performance and the same access
plan at runtime

Examples how to use EXPLAIN are given in the remainder of this article.

4.2) Performance tuning using indexing techniques

Consider the case of an exact-match query (example: SELECT * FROM t WHERE t.col1=x):
If no index is available, the default behavior by the database will be to scan through the entire
table examining each row if it satisfies the required conditions. If a table has n rows, this
approach will run in linear time in the number of rows. This type of scanning through a table
is known as table scan. If you issue the same query and the database can use an index (in the
example an index on column col1), the database will perform a search in the index tree
(known as index scan) which is running approximately in log(n) runtime. This requires,
however, non-degenerated index trees. A degenerated index tree could be generated if you
define an index on a column which has the same value for all rows. It is called degenerated
because it looks like a list since all nodes are hanging in a linked list fashion from one node of
the index tree. The index scan will be most beneficial on reasonable large to huge tables
where the column with the index has a high percentage of distinct values compared to the
overall number of rows. An index scan selects only the pages from the table which contain at
least one qualifying row. This means the amount of data read from the file system could be
much lower leading to much better performance because less data pages from the table need
to be loaded into memory to retrieve the rows in the result set. Therefore, for optimizing
SELECT query performance you need to identify on which columns you need to create
indexes to support the WHERE-conditions of your queries properly. The following items are
relevant to know for proper index creation if DB2 Everyplace database is used:

• Indexes are implemented bi-directional.

5 This assumes that the data load at development time is comparable to the data load at runtime.

• If multi-column indexes are defined index prefix scanning is supported (see 4.2.2 for
details).

• In case of multi table selects (typically joins) the order of the tables in the FROM-
clause matters because Join-reordering is not supported.

4.2.1) Bi-directional indexes

Let us start with the bi-directional index implementation. If you issue a SELECT query with
an ORDER BY clause, for each column in the ORDER BY clause you can specify ascending
or descending order. Important to note is that the direction specified in the ORDER BY clause
does not matter: If an index on a column for the ORDER BY clause is available, it will
support ascending and descending orders due to the bidirectional implementation which
means that you need only one index to support both order directions. Consider now the
examples below:

• CREATE TABLE orderTable (pkey int not null primary key, col1 int, col2 int, col3
int, col4 int, col5 int)

• CREATE INDEX i1 ON orderTable(col1 ASC)
• CREATE INDEX i2 ON orderTable(col2 DESC)
• CREATE INDEX i3 ON orderTable(col3 ASC, col4 DESC)

1. SELECT * FROM orderTable ORDER BY col1 ASC
2. SELECT * FROM orderTable ORDER BY col1 DESC
3. SELECT * FROM orderTable ORDER BY col2 ASC
4. SELECT * FROM orderTable ORDER BY col2 DESC
5. SELECT * FROM orderTable ORDER BY col3 DESC, col4 ASC
6. SELECT * FROM orderTable ORDER BY col1 DESC, col2 ASC
7. SELECT * FROM orderTable ORDER BY col1 DESC, col5

First of all Figure 4 shows how to use the EXPLAIN command. The access plan materialized
by the EXPLAIN command is stored in a table called DB2ePLANTABLE6 which will be
created if it does not exist. You need to use double quotes if you refer to it in an SQL
statement (see the select in the picture). As you can see for the queries 1)-5) from above it
neither matters if the order is ascending or descending nor if it is a single or a multi-column
index - the indexes i1, i2 or i3 are used for query evaluation and support both scanning
directions. However, in case you use a single column contained in another index like in
example 6) no index at all will be used even if the used column is part of an index. In addition
the sorting happens in a temporary table on the file system as indicated with the "Y" in the
SORT_TEMP column of the DB2ePLANTABLE. A solution of this problem could be the
usage of multi-column indexes which have the additional advantage that you need less
indexes defined on your table and therefore lead to better insert, update and delete
performance. Note that if for a column referenced in an ORDER BY clause no index is
available (like for col5 in query 7) above), then the sorting will be done on the file system
using a temporary table (again marked with a "Y" in the SORT_TEMP column of the
DB2ePLANTABLE). Sorting in temporary files on slow I/O hardware will require
significantly more time than evaluating the ORDER BY supported by an index (in this case
no temporary table is needed). If you use memory cards with PDAs or smart phones make
sure temporary table creation for sorting triggered by ORDER BY clauses is avoided if

6 Note that the DB2ePLANTABLE is not a system table.

possible because many memory cards have slow I/O performance.

Figure 4: Using the EXPLAIN command

4.2.2) Prefix scanning

For explaining the index prefix scanning let us look at an example again:

• CREATE TABLE myTable (pkey int not null primary key, col1 int, col2 int, col3 int,
col4 int, name varchar(50))

• CREATE INDEX myIndex1 ON myTable(col1, col2, col3, col4)

1. SELECT name FROM myTable WHERE col1 = value1
2. SELECT name FROM myTable WHERE ((col1 = value1) AND (col2 = value2))
3. SELECT name FROM myTable WHERE ((col1 = value1) AND (col2 = value2)

AND (col3 = value3))
4. SELECT name FROM myTable WHERE ((col1 = value1) AND (col2 = value2)

AND (col3 = value3) AND (col4 = value4))
5. SELECT name FROM myTable WHERE ((col1 = value1) OR (col2 = value2))
6. SELECT name FROM myTable WHERE col2 = value2
7. SELECT name, col1 FROM myTable WHERE ((col1 = value1) OR (col2 = value2))

ORDER BY col1

8. SELECT name, col2 FROM myTable WHERE ((col1 = value1) OR (col2 = value2))
ORDER BY col2

• example for using EXPLAIN with DB2eCLP: EXPLAIN SET queryno=1 FOR

SELECT name FROM myTable WHERE col1 = value1;
• example to retrieve the access plan from DB2ePLANTABLE with DB2eCLP:

SELECT * FROM "DB2ePLANTABLE" WHERE query_no=1;

If you use the EXPLAIN statement (see example above), you will see that the queries 1) to 4)
are supported by the index myIndex1. This means, with a single multi-column index you can
support multiple queries reducing the performance impact on insert, update and delete
operations because you only need one instead of four indexes to support all of them. Query 6)
outlines why it is called prefix scanning: Only if a complete subset of the first m columns (this
is the prefix) starting with the first column in the index definition of an index with n columns
are appearing in the WHERE-clause, the index qualifies for query evaluation (in query 6)
(col1 is not referenced in the WHERE-clause, therefore no complete prefix can be used and
the index does not apply). Query 5) shows another rule that an index must fulfill to be
applicable: If there are multiple conditions in the WHERE-clause, only conditions connected
by AND operators are applicable for index selection. This means, if a column only appears in
conditions coupled with the OR operator, a defined index will not be used. However, if as in
example 7) a column is appearing in the WHERE-clause grouped by an OR operator and is
appearing in an ORDER BY clause containing the same column, then the index will be
chosen again7, assuming that the prefix rule is not violated in the ORDER BY clause. Query
8) in contrast to query 7) does not use the index because in the ORDER BY clause the prefix
rule is violated.

4.2.3) Supporting join conditions with indexes

Computing the result set of a multi table SELECT query means to compute the entire or a
subset of cross product operation on all combinatorial possible row combinations. Let us
assume you are doing a four table SELECT query on four small tables A,B,C,D each
containing 1000 rows with no WHERE clause. The cross product of all possible row
combinations would be 1000*1000*1000*1000=1.000.000.000.000 rows in the result set. It is
easy to imagine that the computation of this, for example on a PDA, is taking too long for all
practical purposes. Besides, in almost all cases you are interested only in those rows in the
result set that fulfill additional join or projection operations or both. If such conditions are part
of the SELECT, only a subset of the actual cross product might be computed depending on
certain factors. Again, indexes are beneficial for computing join conditions. However, an
available index must comply with certain optimizer internal rules for being chosen. Let us
examine this in more detail in the remainder of this subsection and start again with an
example to understand the problem in more detail:

• CREATE TABLE t1 (pkey int not null primary key, col1 int, col2 int, col3 int)
• CREATE TABLE t2 (pkey int not null primary key, col1 int, col2 int, col3 int)
• CREATE TABLE t3 (pkey int not null primary key, col1 int, col2 int, col3 int)
• CREATE INDEX i1 ON t2 (col2)
• CREATE INDEX i2 ON t3 (col3)

7 The index in this case will be used for the sorting required by the ORDER BY-clause. It is not supporting the
OR operator.

1. SELECT t1.col1, t2.col2, t3.col3 FROM t1, t2, t3 WHERE t1.col2=t2.col2 AND
t2.col3=t3.col3

2. SELECT t1.col1, t2.col2, t3.col3 FROM t3, t2, t1 WHERE t1.col2=t2.col2 AND
t2.col3=t3.col3

3. SELECT t1.col1, t2.col2, t3.col3 FROM t2, t3, t1 WHERE t1.col2=t2.col2 AND
t2.col3=t3.col3

As you can see in the queries 1) to 3) the only difference between them is the order of the
tables in the FROM-clause. If you use EXPLAIN on each of them, you will see that query 1)
uses both indexes i1 and i2, query 2) uses none and query 3) uses only i2. This means there is
a difference between the fact that an index exists and an index is actually used during query
execution. For queries containing join-conditions the order of the tables in the from-clause
influences the decision if an existing index can be used for computing the result set or not. As
you recall from a previous section, join-reordering is not supported by DB2 Everyplace
mobile database. Cost-based optimizers are able to perform in many cases a reordering of the
tables in the from-clause to increase the number of join-conditions actually using existing
indexes.8 This happens during the optimization of the access plan performed by the SQL
optimizer. Join-reordering is a powerful feature for the following reason: If you have n tables,
then there are n! permutations possible in the from-clause. Figure 5 gives you an idea how
fast the function n! is growing:

Number of tables Number of permutations for from-clause: n!
2 2 = 1*2
3 6 = 1*2*3
4 24 = 1*2*3*4
5 120 = 1*2*3*4*5
6 720 = 1*2*3*4*5*6
7 5.040 = 1*2*3*4*5*6*7
…
11 39.916.800
…
Figure 5: Illustrating the growth of the n! function

Finding among them a permutation of the tables which is performing well is therefore a not
easy to accomplish task. For DB2 Everyplace mobile database here are some guidelines
which allow you to still write good performing queries without trying out all the
permutations:

• Tables with a small number of rows should be as far as possible to the left in the list of
tables in the from-clause.

• If you have n tables and m (m >= n-1) join conditions, at most n-1 of the m join
conditions will be supportable by an index. Since in each join condition no more than
one index will be used, it is sufficient to have an index created on one of the two
columns in the join. This means the creation of an index is useful on at most n-1
columns in n-1 join conditions. For selecting these columns here are some guidelines:

o Only create indexes on columns with as many different values as possible.

8 Note that cost-based optimizers normally do a lot more than just trying to increase index usage for complex
join queries. For example they analyze the number of rows in intermediate join products and try to keep this
number as small as possible.

o If a table has many rows, the higher the benefits of an index will be in
evaluating joins. Given table A with 20 rows, table B with 10.000 rows and the
condition A.col1 = B.col2. If col1 from table A has 20 different values and
col2 of table B has only 10 different values which appear approximately the
same number of times in the column, then create the index on table B. From
table B this way approximately 9000 rows are easily identified as not
qualifying by using the index significantly improving performance (compared
to only 19 in table A if the index would be on col1).

• If the SELECT statement using join conditions has an order by-clause try to support
the order by-clause with an index to avoid temporary table creation on the file system
for the order operation.

Index support for queries using join conditions is very important. Computing the result set of
SELECTs retrieving data from multiple tables using multiple join conditions are among the
most resource intensive tasks for a database. In various customer situations where the claim
was that queries using join conditions were always running too slow the problem could be
easily solved by introducing the proper indexes and reordering the tables in the from-clause of
the query so that the created indexes are also used. During development time ensure that
SELECTs with a lot of join conditions are using a reasonable amount of indexes.

You got now guidelines when to create indexes for improving query performance. To sum it
up these are cases where you should consider proper indexing:

• SELECTs with an ORDER BY clause to avoid temporary table creation involving
slow IO

• Multi-table SELECTs with JOIN or projection conditions or both
• Projections
• Conditions connected with AND-operator
• Columns with a high percentage of distinct values compared to the overall number of

rows in the table are normally good candidates for an index.

However, index creation has the following drawback:

• Insert, Update and Delete performance will degrade since index tree maintenance has
a runtime.

During normal application execution where usually only a few insert, update or delete
operations happen due to actions on any application screen (think about the amount of data
you expect to change if you input it using a stick or a keyboard on PDA or a smart phone), the
time spent for the database work is in many cases only a small fraction compared to a screen
refresh or screen switch. This means the overhead for maintaining index trees during insert,
update and deletes is small enough compared to the huge gains you can get if indexes can be
used to support your queries.

4.3) Design considerations

In this subsection, I briefly introduce a few design considerations you should keep in mind
when you are designing database applications using DB2 Everyplace mobile database.

Example 1:

If you design a mobile application, try to design for scalability and try to avoid hard limits
imposed by implementation. Imagine you design an application for service technician
personal which, from time to time, needs technical information on the mobile device such as
images of spare parts or PDF documents with instructions, etc. Now consider the following
two table definitions:

• CREATE TABLE docs1 (pkey INT NOT NULL PRIMARY KEY, documents
BLOB(32000))

• CREATE TABLE docs2 (pkey INT NOT NULL, piecenumber INT NOT NULL,
documents BLOB(32000), PRIMARY KEY(pkey, piecenumber))

If you use the definition of table docs1, your application will not be able to handle any
documents larger than 32000 bytes because the design assume there will never be a document
needed on a mobile device larger than 32000 bytes. Now consider table definition docs2: The
design in this case assumes that there might be documents larger than 32000 bytes which will
be divided into multiple pieces fitting into the column documents. The object is stored in
multiple rows using unique primary keys using the same value for the pkey column and
increasing values in the piecenumber column. This means with a select like this you can
retrieve a document stored in multiple rows:

• SELECT * FROM docs2 ORDER BY pkey, piecenumber

With the order by - clause you will have the pieces in proper order in the result set so that
combining them in the right order to get the entire document back is fairly easy. With similar
considerations you can implement Delete and Update operations for documents larger than
the Blob column easily. The only limitation, if you use the design behind the table definition
docs2, is the available space on the file system.

Example 2:

Let us assume your application has materials which can be divided into eight different groups
which you call type1 to type8 with value ranges for each group. Now consider the following
two table definitions and the following queries:

• CREATE TABLE mat_group(pkey INT NOT NULL PRIMARY KEY, type1 INT,
type2 INT, type3 INT, type4 INT, type5 INT, type6 INT, type7 INT, type8 INT)

• CREATE TABLE mat_group2(pkey INT NOT NULL PRIMARY KEY, type
CHAR(5), value INT)

• SELECT * FROM mat_group WHERE type1 = 3 OR type3 = 5 OR type7 = 11
ORDER BY type1, type3, type7

• SELECT * FROM mat_group2 WHERE (type = ‘type1’ AND value = 3) OR (type =
‘type3’ AND value = 5) OR (type = ‘type7’ AND value = 11) ORDER BY type

Whenever you need to order the result by the types type1 to type8 the second table
mat_group2 only needs one index on the type column to achieve this goal whereas for table
mat_group you will not be able to provide the same functionality with only one single column
index for all possibilities of the typeX columns in the order by-clause. You should keep an
eye on table designs which allow most queries to run with index usage requiring the minimal

number of indexes to maintain to keep the penalty on Insert, Update and Delete operations as
small as possible.

Example 3:

Some of the database features require a little more work using them during implementation
but offer better performance. Below is an example:

1.
a. CREATE TABLE test (counter INT NOT NULL, fname CHAR(30) NOT

NULL, lname CHAR(30) NOT NULL)
b. SELECT MAX(counter) FROM TEST
c. INSERT INTO test VALUES(max+1, ‘Joe’, ‘Smith’)

2.
a. CREATE TABLE test2 (counter INT NOT NULL GENERATED ALWAYS

AS IDENTITY, fname CHAR(30) NOT NULL, lname CHAR(30) NOT
NULL)

b. INSERT INTO test2(fname, lname) VALUES(‘Joe’, ‘Smith’)

If you use option 1 for your implementation and you intend to ensure increasing values in the
counter column, you will always have the need to issue a query first retrieving the current
maximum in the column. Then you need to add 1 in your application to the retrieved
maximum before being able to insert a new row with a new maximum value for the counter
column. This is not the best way to go from a performance point of view. Option 2 shows you
how to use a database option – in this case the IDENTIY column feature – to achieve the
same goal by avoiding the unnecessary query for the maximum. Note though that the Insert
statement is now just a tiny little bit more complex because you are required to specify the
column names in parentheses after the table name in which you intend to insert explicitly.
Admitting that this is a fairly simple example it shows nonetheless that using the options
offered by the database can significantly improve the application performance.

5) Summary

In this whitepaper IBM DB2 Everyplace mobile database was introduced. The architecture of
two important supported programming interfaces was described: JDBC and .NET. In the final
part of the whitepaper important tuning hints for writing efficient SQL queries were given.
Using them, you should now be able to write well performing mobile applications using DB2
Everyplace mobile database.

6) About the author

Martin Oberhofer worked for DB2 Everyplace performance team in the Silicon Valley
Laboratories of IBM. In 2003 he joined IBM Germany and is currently working as DB2
Everyplace consultant at SAP. He is interested in mobile and database technology, Java and
Linux. You can contact him at martino@de.ibm.com.

mailto:martino@de.ibm.com

7) Bibliography

1. DB2 Everyplace homepage:

http://www.ibm.com/software/data/db2/everyplace/new81.html
2. DB2 Everyplace library:

http://www.ibm.com/software/data/db2/everyplace/library.html
3. DB2 Everyplace Performance Tuning Guide:

http://www.ibm.com/software/data/db2/everyplace/library.html
4. DB2 Everyplace Application Developer Guide:

http://www.ibm.com/software/data/db2/everyplace/library.html
5. DB2 Everyplace Installation Guide:

http://www.ibm.com/software/data/db2/everyplace/library.html
6. DB2 Everyplace Architecture details:

http://mordor.prakinf.tu-ilmenau.de/papers/dbspektrum/dbs-05-09.pdf
7. DB2 Everyplace Success Stories:

http://www.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&
RestrictToCategory=db2software_DB2Everyplace

8. FAQ for DB2 Everyplace:
http://www.ibm.com/software/data/db2/everyplace/support.html

9. DB2 Everyplace Mailing list:
http://groups.yahoo.com/group/db2everyplace/

10. DB2 Everyplace SDK:
http://www14.software.ibm.com/webapp/download/product.jsp?s=p&id=JPEN-4HNW2H

11. DB2 Everyplace .NET application development:
http://www-106.ibm.com/developerworks/edu/dm-dw-dm-0409oberhofer-

i.html?S_TACT=104AHW11&S_CMP=LIB%20
12. WebSphere Studio Device Developer homepage to obtain trial version of J9 JVM:

http://www.ibm.com/software/wireless/wsdd/
13. WebSphere Studio Device Developer library:

http://www.ibm.com/software/wireless/wsdd/library.html
14. Resources on .NET programming:

http://www.ondotnet.com/dotnet/

http://www.ibm.com/software/data/db2/everyplace/new81.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://mordor.prakinf.tu-ilmenau.de/papers/dbspektrum/dbs-05-09.pdf
http://www.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=db2software_DB2Everyplace
http://www.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=db2software_DB2Everyplace
http://www.ibm.com/software/data/db2/everyplace/support.html
http://groups.yahoo.com/group/db2everyplace/
http://www14.software.ibm.com/webapp/download/product.jsp?s=p&id=JPEN-4HNW2H
http://www-106.ibm.com/developerworks/edu/dm-dw-dm-0409oberhofer-i.html?S_TACT=104AHW11&S_CMP=LIB%20
http://www-106.ibm.com/developerworks/edu/dm-dw-dm-0409oberhofer-i.html?S_TACT=104AHW11&S_CMP=LIB%20
http://www-306.ibm.com/software/wireless/wsdd/
http://www-306.ibm.com/software/wireless/wsdd/library.html
http://www.ondotnet.com/dotnet/

	1) Introduction
	2) Functional scope
	3) Architecture
	3.1) The JDBC Interface
	3.1.1) Architecture of the JDBC interface
	3.1.2) Hints for using the JDBC interface of DB2 Everyplace
	3.2) Architecture of the .NET interface
	3.3) A short primer on database architecture
	3.4) Optimizer considerations

	4) Performance Tuning
	4.1) EXPLAIN
	4.2) Performance tuning using indexing techniques
	4.2.1) Bi-directional indexes
	4.2.2) Prefix scanning
	4.2.3) Supporting join conditions with indexes
	4.3) Design considerations

	5) Summary
	6) About the author
	7) Bibliography

