

SAP NetWeaver
How-To Guide

How To... Develop Custom
Converters and Validators

Applicable Releases:

SAP NetWeaver Composition Environment 7.1

Topic Area:
User Productivity
Development and Composition

Capability:
User Interface Technology
Java

Version 1.0

October 2008

© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or for any purpose without the

express permission of SAP AG. The information contained

herein may be changed without prior notice.

Some software products marketed by SAP AG and its

distributors contain proprietary software components of

other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are

registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel

Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,

OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP,

Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix,

i5/OS, POWER, POWER5, OpenPower and PowerPC are

trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader

are either trademarks or registered trademarks of Adobe

Systems Incorporated in the United States and/or other

countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered

trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,

WinFrame, VideoFrame, and MultiWin are trademarks or

registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or

registered trademarks of W3C®, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,

Inc., used under license for technology invented and

implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP

NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are

trademarks or registered trademarks of SAP AG in

Germany and in several other countries all over the world.

All other product and service names mentioned are the

trademarks of their respective companies. Data contained

in this document serves informational purposes only.

National product specifications may vary.

These materials are subject to change without notice.

These materials are provided by SAP AG and its affiliated

companies ("SAP Group") for informational purposes only,

without representation or warranty of any kind, and SAP

Group shall not be liable for errors or omissions with

respect to the materials. The only warranties for SAP

Group products and services are those that are set forth in

the express warranty statements accompanying such

products and services, if any. Nothing herein should be

construed as constituting an additional warranty.

These materials are provided “as is” without a warranty of

any kind, either express or implied, including but not

limited to, the implied warranties of merchantability,

fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including

without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials.

SAP does not warrant the accuracy or completeness of the

information, text, graphics, links or other items contained

within these materials. SAP has no control over the

information that you may access through the use of hot

links contained in these materials and does not endorse

your use of third party web pages nor provide any warranty

whatsoever relating to third party web pages.

SAP NetWeaver “How-to” Guides are intended to simplify

the product implementation. While specific product

features and procedures typically are explained in a

practical business context, it is not implied that those

features and procedures are the only approach in solving a

specific business problem using SAP NetWeaver. Should

you wish to receive additional information, clarification or

support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”)

included in this documentation are only examples and are

not intended to be used in a productive system

environment. The Code is only intended better explain and

visualize the syntax and phrasing rules of certain coding.

SAP does not warrant the correctness and completeness of

the Code given herein, and SAP shall not be liable for

errors or damages caused by the usage of the Code, except

if such damages were caused by SAP intentionally or

grossly negligent.

Disclaimer

Some components of this product are based on Java™. Any

code change in these components may cause unpredictable

and severe malfunctions and is therefore expressively

prohibited, as is any decompilation of these components.

Any Java™ Source Code delivered with this product is only

to be used by SAP’s Support Services and may not be

modified or altered in any way.

Document History
Document Version Description

1.00 First official release of this guide

Typographic Conventions
Type Style Description

Example Text Words or characters quoted
from the screen. These
include field names, screen
titles, pushbuttons labels,
menu names, menu paths,
and menu options.

Cross-references to other
documentation

Example text Emphasized words or
phrases in body text, graphic
titles, and table titles

Example text File and directory names and
their paths, messages,
names of variables and
parameters, source text, and
names of installation,
upgrade and database tools.

Example text User entry texts. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example
text>

Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

Icons
Icon Description

 Caution

 Note or Important

 Example

 Recommendation or Tip

Table of Contents

1. Business Scenario... 1

2. Background Information... 1

3. Prerequisites .. 1

4. Step-by-Step Procedure.. 2
4.1 Tutorial Setup ... 2
4.2 Extend Product Offer Tutorial ... 5
4.3 Implement Custom Converter Class .. 7
4.4 Implement Custom Validator Class .. 13
4.5 Build, Deploy and Run your application ... 17

How To... Develop Custom Converters and Validators

1. Business Scenario
In the previous tutorial you created a JSF application that used standard converters and validators to
maintain the integrity of your model.

The following guide will extend the Product Offer tutorial (Convert And Validate Data [extern]) by
adding a Product Code field. It will also show you how to implement application-specific converters
and validators. The custom converter will allow users to enter the code without any special characters
and it will format the code using a dash to separate the characters. The custom validator will check the
digits of the code, so it will have three characters follow by a dash and four numbers (XXX-1234).

If there are any errors, the page is redisplayed with the values entered by the user in order to correct
them. If all validations are successful, the application will continue with the creation process.

2. Background Information
JSF standard converters and validators cover a lot of bases, but many web applications must go
further. The real power of the Faces conversion model is its extensibility and you will now be
familiarized with the creation of custom converter class.

Creating custom Validator implementations is even more common than creating custom Converter
instances. JSF makes it very easy to create a custom validator class. This guide will also explain how
to create and register a custom validator class.

3. Prerequisites
The following is a list of all you need for developing JSF applications.

• AS Java 7.1 (CE 7.1 or NW 7.1)

• NWDS 7.1 (SP3 or higher with latest patch level).

 Note
While this tutorial is geared towards to the SAP AS Java (the build/deploy steps of the
guide), it wouldn’t be hard to replace the build/deploy portions with similar steps for any
other Java EE 5 platform

Knowledge

• You have a basic knowledge of Java Enterprise Edition

• You have acquired some basic experience with JSF applications, for example by working
through the JSF tutorials (Create a Hello World Application using JavaServer Faces [Extern]
and Create Your First JSF Application [Extern])

• You have successfully completed the Product Offer tutorial (Convert And Validate Data [extern])
or you have imported the Product Offer Project Template into the SAP NetWeaver Developer
Studio

October 2008 1

How To... Develop Custom Converters and Validators

4. Step-by-Step Procedure
In the following sections you will extend the Product Offer tutorial (Convert And Validate Data [extern])
by adding a Product Code field.

You will also create a custom converter class by

• Creating a converter class that implements the “javax.faces.convert.Converter” interface.

• Implementing the getAsObject() and getAsString() methods within your converter class.

• Registering your converter in faces-config.xml.

• Using the <f:converter> tag in your page view.

In addition you will create a custom validator class by

• Creating a validator class that implements the javax.faces.validator.Validator interface which will
require a validate method.

• Registering your validator in faces-config.xml

• Using the <f:validator> tag in your page view.

4.1 Tutorial Setup
1. Download the ZIP file 04_converterjsf_init.zip, which contains the initial JSF project. Save it in a

local directory.

2. Unzip the contents of the 04_converterjsf_init.zip into the JDI workspace of the SAP NetWeaver
Developer Studio under LocalDevelopment → DCs folder

3. Call the SAP NetWeaver Developer Studio and Open the Development Infrastructure
perspective

4. Drill into LocalDevelopment -> MyComponents

October 2008 2

How To... Develop Custom Converters and Validators

5. Right click on the converterjsf/web component and select Sync / Create Project → Create
Project

6. In the Create DC Projects window select tc/bi/bp/webmodule and click the OK button

October 2008 3

How To... Develop Custom Converters and Validators

7. Right click on the converterjsf/ear component and select Sync / Create Project → Create
Project

8. In the Create DC Projects window select tc/bi/bp/enterpriseapplication and click the
OK button

9. Switch to the Java EE perspective. The Development Components have been imported in the
Project Explorer window

October 2008 4

How To... Develop Custom Converters and Validators

4.2 Extend Product Offer Tutorial
...

1. From the context menu of the Java Resources: source folder in the Web Module project open
the Product.java class

2. Declare the code attribute and generate the corresponding Getter and Setter methods shown in
the following code.

private String code;

…

 public String getCode() {

 return code;

 }

 public void setCode(String code) {

 this.code = code;

 }

3. In the index.jsp page place the following UI elements in the second row of the Panel Grid UI
element.

Property Value

OutputText UI element in the UI-element PanelGrid

value Code

styleClass label

InputText UI element

Id code

value #{product.code}

label Code

required true

Message UI element

for code

errorClass errorMessage

4. Result of index.jsp page

October 2008 5

How To... Develop Custom Converters and Validators

5. Save the changes you made

6. In the result.jsp page place the following UI elements in the second row of the Panel Grid UI
element.

Property Value

OutputText UI element in the UI-element PanelGrid

value Code

styleClass label

OutputText UI element in the UI-element PanelGrid

value #{product.code}

styleClass text

7. Result of result.jsp page

October 2008 6

How To... Develop Custom Converters and Validators

8. Save the changes you made

4.3 Implement Custom Converter Class
...

1. Create a converter class that implements the javax.faces.convert.Converter interface. From the
context menu of the Java Resources: source folder in the Web Module project create a Java
class. Enter CodeConverter in the Name field, com.sap.tutorial.jsf.conv.util in the
Package field and add javax.faces.convert.Converter in the Interfaces field.

October 2008 7

How To... Develop Custom Converters and Validators

2. The converter class will be created. A converter must implement the Converter interface, which
has the following two methods: getAsObject and getAsString.

 Note
The getAsObject method converts a string into an object of the desired type, throwing a
ConverterException if the conversion cannot be carried out. This method is called when
a string is submitted from the client, typically in a text field. The getAsString method
converts an object into a string representation to be displayed in the client interface.

October 2008 8

How To... Develop Custom Converters and Validators

3. The getAsObject method in the CodeConverter class checks whether the product code has an
invalid character. If it finds an invalid character, it throws a ConverterException. Implement the
getAsObject by entering the following code in its body:

 Important
Notice that the ConverterException method receives a FacesMessage object. The
FacesMessage object contains the summary and detail messages that can be displayed
with message tags.

public Object getAsObject(FacesContext arg0, UIComponent arg1, String arg2)
{

 int i = 0;

 boolean foundInvalidCharacter = false;

 String errorMessage = new String();

 if (arg2 == null){

 return null;

 }

 arg2 = arg2.replace("-", "").trim();

 StringBuilder builder = new StringBuilder(arg2);

 while (i < builder.length() && !foundInvalidCharacter) {

 char ch = builder.charAt(i);

 if (Character.isLetter(ch) || Character.isDigit(ch))

 i++;

 else if (Character.isWhitespace(ch))

 builder.deleteCharAt(i);

 else {

 foundInvalidCharacter = true;

 errorMessage = "Invalid character found '" + ch + "'";

 }

October 2008 9

How To... Develop Custom Converters and Validators

 }

 if (foundInvalidCharacter) {

 FacesMessage message = new FacesMessage();

 message.setDetail("Code: Convertion error: "+ errorMessage);

 message.setSummary("Code: Convertion error: " + errorMessage);

 message.setSeverity(FacesMessage.SEVERITY_ERROR);

 throw new ConverterException(message);

 }

 return builder.toString();

 }

4. The getAsString method in the CodeConverter class allows users to enter the code without any
special characters and it will format it using a dash to separate the characters the first three
characters. Implement the getAsString method by entering the following code in its body

public String getAsString(FacesContext arg0, UIComponent arg1, Object arg2)
{

 if (arg2 == null){

 return null;

 }

 String code = arg2.toString();

 if (code.length()>=3){

 StringBuffer formattedCode = new StringBuffer();

 String part1 = code.substring(0,3);

 String part2 = code.substring(3,code.length());

 formattedCode.append(part1.toUpperCase());

 formattedCode.append("-");

 formattedCode.append(part2);

 return formattedCode.toString();

 } else{

 return code;

 }

 }

October 2008 10

How To... Develop Custom Converters and Validators

5. To register your converter in faces-config.xml, drill into the Web Module project, in the
WebContent → WEB-INF folder and open the faces-config.xml file

6. Go to the Component tab, select the Converters section and click the Add button

7. Enter CodeConverter in the Converter ID field and
com.sap.tutorial.jsf.conv.util.CodeConverter in the Converter Class field.

 Note
The Converter ID field is a symbolic ID that you register with the JSF application

8. Save the changes you made

9. The following XML code is added automatically between the <faces-config … > </faces-config>
tags

 <converter>

 <converter-id>CodeConverter</converter-id>

 <converter-class>

 com.sap.tutorial.jsf.conv.util.CodeConverter

 </converter-class>

 </converter>

10. In the index.jsp page click the JSF Core toolset in the Palette, this will show all the elements
available within it

October 2008 11

How To... Develop Custom Converters and Validators

11. Place the converter element (found in the JSF Core elements) between the code InputText
element (<h:inputText>… </h:inputText> tags) and set the Converter ID property to
CodeConverter

12. Repeat the steps 10-11 in the result.jsp page

October 2008 12

How To... Develop Custom Converters and Validators

13. Save the changes you made

4.4 Implement Custom Validator Class
...

1. Create a validator class that implements the javax.faces.validator.Validator interface. From the
context menu of the Java Resources: source folder in the Web Module project create a Java
class. Enter CodeValidator in the Name field, com.sap.tutorial.jsf.conv.util in the
Package field and add javax.faces.validator.Validator in the Interfaces field.

October 2008 13

How To... Develop Custom Converters and Validators

2. The validator class will be created. A validator must implement the Validator interface, which
defines only one method: validate.

 Note
The validate method validates the component to which this validator is attached. If there
is a validation error, throw a ValidatorException

October 2008 14

How To... Develop Custom Converters and Validators

3. The validate method in the CodeValidator class checks whether the code has a valid length. It
also checks if the code has three characters follow by a dash and four numbers (XXX-1234), if it
is not the case, it will throw a ValidatorException. Implement the validate method by entering the
following code in its body

 public void validate(FacesContext arg0, UIComponent arg1, Object arg2)

 throws ValidatorException {

 int i = 0;

 boolean foundError = false;

 String errorMessage = new String();

 String code = arg2.toString();

 code = code.replace("-", "").trim();

 StringBuilder builder = new StringBuilder(code);

 if (builder.length() == 7) {

 while (i < builder.length() && !foundError) {

 char ch = builder.charAt(i);

 if (Character.isLetter(ch) && i < 3)

 i++;

 else if (Character.isDigit(ch) && i >= 3)

 i++;

 else if (Character.isWhitespace(ch))

 builder.deleteCharAt(i);

 else {

 foundError = true;

errorMessage = "Invalid code. It should be 'XYZ1234' or
'XYZ-1234'";

 }

October 2008 15

How To... Develop Custom Converters and Validators

 }

 } else{

 foundError = true;

errorMessage = "Invalid length '" + builder.length() + "'. Lenght
allowed is 7 or 8";

 }

 if (foundError) {

 FacesMessage message = new FacesMessage();

 message.setDetail("Code: Validation error: "+ errorMessage);

 message.setSummary("Code: Validation error: " + errorMessage);

 message.setSeverity(FacesMessage.SEVERITY_ERROR);

 throw new ValidatorException(message);

 }

 }

4. To register your converter in faces-config.xml, drill into the Web Module project, in the
WebContent → WEB-INF folder and open the faces-config.xml file

5. Go to the Component tab, select the Validators section and click the Add button

6. Enter CodeValidator in the Validator ID field and
com.sap.tutorial.jsf.conv.util.CodeValidator in the Validator Class field.

7. Save the changes you made

8. The following XML code is added automatically between the <faces-config … > </faces-config>
tags

 <validator>

October 2008 16

How To... Develop Custom Converters and Validators

 <validator-id>CodeValidator</validator-id>

 <validator-class>

 com.sap.tutorial.jsf.conv.util.CodeValidator

 </validator-class>

 </validator>

9. In the index.jsp, place the validator element (found in the JSF Core elements) between the code
InputText element (<h:inputText>… </h:inputText> tags) and set the Validator ID property to
CodeValidator

 Note
The ValidatorID specified for f:validator must correspond to a validator ID specified in the
faces-config.xml file (step 6)

10. Save the changes you made

4.5 Build, Deploy and Run your application
1. Build and deploy the application.

2. Run the application using the simplified URL:

October 2008 17

How To... Develop Custom Converters and Validators

http://<servername>:<httpport>/converterjsf/faces/index.jsp

3. Results:

October 2008 18

How To... Develop Custom Converters and Validators

October 2008 19

www.sdn.sap.com/irj/sdn/howtoguides

	1. Business Scenario
	2. Background Information
	3. Prerequisites
	4. Step-by-Step Procedure
	4.1 Tutorial Setup
	4.2 Extend Product Offer Tutorial
	4.3 Implement Custom Converter Class
	4.4 Implement Custom Validator Class
	4.5 Build, Deploy and Run your application

