Jim Hagemann Snabe, Ann Rosenberg, Charles Møller, Mark Scavillo

Business Process Management — the SAP® Roadmap
Contents at a Glance

PART I Business Process Management: A New Strategic Context?
1 Introduction .. 21
2 The Evolution of Process Management ... 35
3 Enterprise Architecture and Business Strategy 53
4 Enabling Technologies for BPM ... 65
5 The BPM Transformation .. 83

PART II The BPM Roadmap
6 Introduction to the BPM Roadmap .. 95
7 The BPM Strategy .. 101
8 The BPM Set-up .. 113
9 The BPM Transition ... 157
10 Continuous Improvement ... 219
11 Supporting Activities ... 227
12 Summary .. 247

PART III Business Process Platform — the Enabler for BPM
13 The Value of Bringing BPM and BPP Together 251
14 Arla Case Study .. 269
15 SAP’s View on Business Process Management 285
16 Summary .. 315

PART IV Experiences and Conclusion
17 Wyeth Pharmaceuticals: In Pursuit of Process Excellence 319
18 Conclusion .. 341

Appendices
A List of Abbreviations .. 347
B Typical Questions .. 351
C Summary of Experiences .. 365
D Bibliography .. 381
E Authors ... 389
Contents

Foreword ... 15
Preface ... 17

Part I: Business Process Management: A New Strategic Context?

1 Introduction ... 21
 1.1 What are the benefits of BPM? 22
 1.2 What Is BPM? .. 25
 1.3 Business and BPM .. 27
 1.4 Technology and BPM 29
 1.5 People and BPM .. 30
 1.6 The BPM Journey and the Structure of this Book ... 31

2 The Evolution of Process Management 35
 2.1 Scientific Management 35
 2.2 The Toyota Production System 36
 2.3 Total Quality Management 37
 2.3.1 Lean Manufacturing 38
 2.3.2 Business Excellence 38
 2.3.3 Six Sigma ... 40
 2.4 Business Process Reengineering 43
 2.5 Business Process Management 44
 2.5.1 The Concept of Reference Models 46
 2.5.2 The Concept of Process Maturity 47
 2.5.3 Process Management Systems 49
 2.6 The Future of Process Management 50

3 Enterprise Architecture and Business Strategy 53
 3.1 What Is Enterprise Architecture? 54
 3.1.1 Enterprise Architecture Framework 55
 3.2 Enterprise Architecture Maturity 56
 3.3 Enterprise Architecture as a Strategy 59
Contents

3.3.1 Foundation for Execution 60
3.3.2 The Operating Model ... 60
3.3.3 The IT-Engagement Model 61
3.3.4 Creating and Exploiting the Foundation for Execution ... 62
3.4 BPM and Business Strategy ... 62

4 Enabling Technologies for BPM ... 65
4.1 What Is a Business Process Management System? 65
4.2 The Emergence of Enterprise Systems 67
4.3 Moving Towards the Second Generation of ERP 70
4.4 ERP/II Systems .. 73
 4.4.1 Core Components .. 75
 4.4.2 Central Components ... 76
 4.4.3 Corporate Components 76
 4.4.4 Collaborative Components 77
 4.4.5 New Generation Enterprise Systems? 78
4.5 Moving Towards a Business Process Platform 78
 4.5.1 Event-Based Management 78
 4.5.2 Process-Driven Enterprise Systems 79
 4.5.3 Service-Oriented Architecture 80
 4.5.4 Moving Towards a New Process-Based Architecture for Enterprise Systems 81

5 The BPM Transformation ... 83
5.1 Grundfos Case Study: BE — THINK — INNOVATE 84
 5.1.1 The Initial Situation .. 84
 5.1.2 The Journey .. 85
 5.1.3 Future Challenges ... 87
5.2 A New Value Proposition .. 88
 5.2.1 Business Process Platform 89
 5.2.2 Business Process Management 89
 5.2.3 Business Process Innovation 90
5.3 A Comprehensive Framework for BPM 91
Part II: The BPM Roadmap

6 Introduction to the BPM Roadmap ... 95

7 The BPM Strategy ... 101
 7.1 Link to Strategy ... 102
 7.2 Define Building Blocks .. 105
 7.3 Choose Path ... 108
 7.4 Monitor Fit-Gap .. 110
 7.5 Summary and Key Points .. 112

8 The BPM Set-up ... 113
 8.1 Define Basics ... 114
 8.1.1 Process Map .. 115
 8.1.2 Roles and Decision-Making Bodies 118
 8.1.3 Summary and Key Points 124
 8.2 Develop Analytics ... 124
 8.2.1 Approach for Process Performance Measurement 124
 8.2.2 Process Maturity Concept 130
 8.2.3 Summary and Key Points 133
 8.3 Create Methods ... 134
 8.3.1 BPM Methodology .. 134
 8.3.2 BPM Tool Landscape ... 141
 8.3.3 Modeling Conventions ... 148
 8.3.4 Summary and Key Points 153
 8.4 Harmonize Terms: Process Terminology 154
 8.4.1 Ensuring Clarity of Terms 154
 8.4.2 Consolidating and Publishing the Terms 155
 8.4.3 Summary and Key Points 156

9 The BPM Transition .. 157
 9.1 Create Basis .. 158
 9.1.1 Design an Enterprise Process Map 159
 9.1.2 Assign Process Ownership 162
 9.1.3 Define Process Performance Indicators (PPIs) 172
 9.1.4 Summary and Key Points 180
Contents

9.2 Perform Analysis ... 181
 9.2.1 Conducting a Process Maturity Analysis 181
 9.2.2 Corporate Process Reporting 187
 9.2.3 Summary and Key Points 190

9.3 The Portfolio .. 191
 9.3.1 Performing Project Portfolio Management 191
 9.3.2 Implement Decision-Making Bodies 195
 9.3.3 Summary and Key Points 198

9.4 Optimize Processes .. 199
 9.4.1 Execute with the PML Methodology 199
 9.4.2 Execute with Six Sigma 210
 9.4.3 Summary and Key Points 218

10 Continuous Improvement ... 219
 10.1 Process-Based Rewards .. 220
 10.2 Expand Corporate Business Reporting 221
 10.3 Process-Based Budget and Cost Allocations 222
 10.4 Process Audits .. 224
 10.5 Summary and Key Points 225

11 Supporting Activities .. 227
 11.1 Build a Process-Centric IT 228
 11.2 Manage Change .. 232
 11.2.1 What is Change Management? 232
 11.2.2 Change Management Approaches 233
 11.2.3 Using Change Management 234
 11.2.4 The BPM Survey 235
 11.2.5 Summary and Key Points 236
 11.3 Communicate and Train .. 236
 11.3.1 Communication 237
 11.3.2 Training ... 243
 11.3.3 Summary and Key Points 246

12 Summary .. 247
Part III: Business Process Platform — the Enabler for BPM

13 The Value of Bringing BPM and BPP Together 251

13.1 Business Needs to Understand How SOA Can Enable BPM ... 252
13.2 The Basic Step to Bring BPM and SOA Together 254
13.3 Establish the Correct Information Base in Terms of SOA-Relevant Processes ... 259
13.4 Specifying Business Service Contracts Including Required Quality Criteria ... 261
13.5 Ensuring an Integrated Business and IT View During Process Modeling .. 266
13.6 Ensuring the Link Between BPM and SOA Governance ... 268

14 Arla Case Study ... 269

14.1 The Three Generations ... 270
14.1.1 First Generation — Before the MD Foods/Arla Merger .. 273
14.1.4 The Three “Guiding Principles” .. 277
14.2 Summary .. 282

15 SAP’s View on Business Process Management 285

15.1 Innovation Without Disruption 285
15.2 Business Network Transformation 287
15.2.1 The Evolution of BPM .. 288
15.2.2 Challenges From an IT Perspective 290
15.2.3 What Is a Business Process — A Definition 292
15.2.4 Building Blocks of SAP NetWeaver BPM Capabilities ... 297
15.2.5 Changing Value Proposition of Reference Models .. 300
15.2.6 Composite Business Processes 301
15.2.7 Embedded Business Rules Management 303
Contents

15.2.8 Business Process Management Standards 305
15.2.9 The Value Proposition of Enterprise BPM 306
15.2.10 Roadmap Highlights 307
15.3 SAP’s New BPM Methodology 308
15.3.1 Calibration .. 309
15.3.2 As-Is Analysis ... 310
15.3.3 To-Be Process Design 311
15.3.4 Solution Transformation 313

16 Summary ... 315

Part IV: Experiences and Conclusion

17 Wyeth Pharmaceuticals: In Pursuit of Process Excellence .. 319
17.1 Company Profile .. 319
17.2 Organizational Background 320
17.3 BPM Philosophy .. 321
17.4 The History of BPM Within TO&PS 324
17.5 Approach to BPM: Setting the BPM Vision 327
17.6 Executing the BPM Vision 329
17.6.1 3-Step Plan .. 329
17.6.2 Community Roles 335
17.6.3 The BPM Value .. 337
17.6.4 Identified BPM Success Factors 338
17.7 Summary .. 339

18 Conclusion ... 341
18.1 BPM — A New Strategic Context 341
18.2 The BPM Roadmap ... 342
18.3 BPP — the BPM Enabler 343
Part V: Appendices
A List of Abbreviations ... 347
B Typical Questions .. 351
 B.1 Part 1: Business Process Management: A New Strategic
 Context? ... 351
 B.2 Part 2: The BPM Roadmap ... 353
C Summary of Experiences ... 365
D Bibliography .. 381
E Authors ... 389

Index .. 407
“Any process is better than no process!
A good process is better than a bad process.
Even a good process can be made better!”
– Michael Hammer

2 The Evolution of Process Management
Charles Møller

Business Process Management (BPM) may be a new label, but the ideas leading to business process management are old. They have been elaborated on and extended upon based on current business issues and available technology for some time. To understand the BPM concept and make projections about the future of process management, it is important to analyze the origin and evolution of the concept of process management. In this chapter we will provide a review and an analysis of the theoretical foundation leading to BPM.

The foundation for process management can be traced back to Adam Smith (1723–1790), who wrote the groundbreaking book: “An Inquiry into the Nature and Causes of the Wealth of Nations (1776)”. In this book, he uses the famous example of a pin factory to argue that “division of labor” is the key to increased productivity. Today this point seems obvious, but at that time, the prevalent thinking was the physiocratic school’s emphasis on *importance* as the source of productivity.

2.1 Scientific Management

The next stage in the evolution is the scientific management movement, initiated by Frederick Winslow Taylor (1856–1915) in the 1880s and 1890s. The important contribution of Taylor is that “rules of thumb”
should be replaced with scientific methods. At that time, the mathematical tools we are familiar with today were created and applied in an industrial context.

Taylor worked at Bethlehem Steel in Pennsylvania, PA, but had the most impact on Ford’s mass production principles.

Ford’s mass production factory represented a revolution in the sense that the application of these principles significantly improved productivity by organizing manufacturing processes differently. This was done by way of new technologies such as the introduction of the conveyor to organize an assembly line.

Other principles, such as standardization of methods and tools, were applied systematically to decrease variation and cost.

Today we associate the images of Charlie Chaplin in “Modern Times” with “Taylorism;” however, Taylor’s ideas founded the field of industrial engineering. Industrial engineering is a scientific field concerning methods and tools for organizing and managing processes, and is the reason for most of the increase in wealth in the last century.

2.2 The Toyota Production System

The poverty in the post World War II era in Japan was the main trigger of the next major industrial engineering paradigm. The scarcity of resources and technology forced Japanese companies to focus on customer requirements. A number of cultural practices were important with regard to this, but the idea of continuous process improvement and the understanding of development rooted in Buddhist thinking was the most important. The idea of continuous process improvement is often embodied in the classic model called the “Shewhart cycle” or “Deming wheel”. This model, shown in Figure 2.1, identifies, in essence, the fundamental process management lifecycle.

These new principles are also part of the background of the most successful business case of all times, Toyota. Toyota has consistently improved their processes, and in the first quarter of 2007, Toyota sales exceeded General Motors (GM) sales for the first time.
The Toyota Production System is based on principles that were initially called *just-in-time production*, where activities were deferred until needed by the customer. The Toyota Production System was designed and developed primarily by Taiichi Ohno, Shigeo Shingo, and Eiji Toyoda, between 1948 and 1975. Taiichi Ohno (1912–1990) redesigned and improved the processes at Toyota using scientific management thinking, and he involved the workers on the factory floor in the implementation process. Ohno also engineered a set of simple principles explaining his theories for process improvement. Concepts such as *Just-in-time*, *Jidoka* (automation), *Kaizen* (continuous improvement), *Poka-Yoke* (fail-safeing), and *Muda* (waste) are all process design principles that have become part of everyday business language.

It is interesting to note that even though Toyota has shared their methods and tools for many years, they are still considered to be the benchmark for process effectiveness. Process excellence seems to be difficult to copy.

2.3 Total Quality Management

Perhaps the most pervasive business concept of all times is *Total Quality Management* (TQM). TQM is a management strategy aimed at embedding awareness of quality in all organizational processes. The field is usually considered to have been founded by W. Edwards Deming, Joseph Juran, Philip B. Crosby, and Kaoru Ishikawa, known as “the big four”. (Deming was actually a consultant at Toyota.)

![Figure 2.1 The “Shewhart Cycle” or “Deming Wheel” in Quality](image)
The difference between TQM and the Toyota Production System is quite subtle, because they share the same underlying concepts. However, TQM has become more institutionalized and has spawned numerous concepts.

SIPOC The *SIPOC model* is the shared fundamental conceptualization of a process. The SIPOC-diagram, shown in Figure 2.2, is a high-level process map. The supplier (S) provide inputs (I) to the process (P) resulting in outputs (O) that meets or exceeds customer (C) expectations.

![Figure 2.2 The SIPOC-Diagram](image)

2.3.1 Lean Manufacturing

The most important TQM clone is *Lean Manufacturing*, which was established based on a study of the difference between the US, Japanese, and European automotive industries (Womac et al., 1991). Lean Manufacturing is a generic process management philosophy widely applied; however, it in essence equals the principles from TQM and the Toyota Production System.

A prerequisite for managing the process is identifying the process. One of the tools developed specifically for this purpose is *value stream mapping* (VSM) or *learning to see* (Rother, 1999), as illustrated in Figure 2.3.

2.3.2 Business Excellence

Business excellence is the use of total quality management principles and tools in business improvement and management.

It is the systematic improvement of business performance based on the principles of customer focus, stakeholder value, and process management.
One of the important business excellence models is the European Foundation for Quality Management (EFQM) Excellence Model.

EFQM, a not-for-profit membership foundation, is the primary source for organizations in Europe looking to excel in their market and in their business.

The EFQM Excellence Model was introduced at the beginning of 1992 as the framework for assessing organizations for the European Quality Award. It is now the most widely-used organizational framework in Europe and has become the basis for the majority of national and regional quality awards (www.efqm.org).

Figure 2.3 Example of Value Stream Mapping and Learning to See
EFQM Excellence Model

This model is a practical tool that can be used for self-assessments, benchmarking, and as a management system for improving business performance.

The EFQM Excellence Model, as illustrated in Figure 2.4, is a non-prescriptive framework that is based on nine criteria. Five of these are “Enablers” and four are “Results”. The “Enabler” criteria cover what an organization does, and the “Results” criteria cover what an organization achieves. “Results” are caused by “Enablers” and “Enablers” are improved using feedback from “Results” (www.efqm.org).

![Figure 2.4 The EFQM Excellence Model](image)

The role of the business process in the EFQM model is to link management efforts with business results.

2.3.3 Six Sigma

TQM spawned another approach, called Six Sigma. Six Sigma is a set of practices developed by Motorola in the mid 1980s. It is a quality-focused process management concept based on statistics.

The term Six Sigma refers to the variation of a standard deviation of a process. The aim of Six Sigma is to improve process quality to a level below 3.4 defects per one million opportunities.
The process management process in Six Sigma is explained using the two key methodologies of Six Sigma: DMAIC and DMADV (see Figure 2.5 and Figure 2.6 respectively). According to Wikipedia (www.wikipedia.org), these activities cover the management of existing processes and the introduction of new processes.

The DMAIC approach is intended to be used to improve existing processes. The basic methodology consists of the following five steps:

1. Define the process improvement goals that are consistent with customer demands and the enterprise strategy.
2. Measure the current process and collect relevant data for future comparison.
3. Analyze to verify the relationship and causality of factors. Determine what the relationship is, and attempt to ensure that all factors have been considered.
4. Improve or optimize the process based on the analysis, using techniques such as design of experiments.
5. Ensure that any variances are corrected before they result in defects. Set up pilot runs to establish process capability, and transition to production. Thereafter, continuously measure the process and institute control mechanisms.

![Figure 2.5 The DMAIC methodology](image)
DMADV approach

The DMADV approach is intended for designing new high performance processes. The basic methodology consists of the following five steps:

1. Define the goals of the design activity that are consistent with customer demands and the enterprise strategy.
2. Measure and identify critical to qualities (CTQs), product capabilities, production process capability, and risk assessments.
3. Analyze to develop and design alternatives, create a high-level design, and evaluate design capability to select the best design.
4. Design details, optimize the design, and plan for design verification. This phase may require simulations.
5. Verify the design, set up pilot runs, implement the production process, and hand over to process owners.

Six Sigma thus makes a clear distinction between designing or re-engineering a process, and managing a process. Even though the activities are similar, this distinction is important.

Competence development

Six Sigma is characterized by an institutionalized competence development program. Practitioners are graduated, like in Judo or Karate, with colored belts indicating their proficiency and the role they play in a project. Six Sigma is thus a concept that is aware of the roles and compe-
tencies of people involved in process management. In Part 2 of this book, we show how SAP has worked with Six Sigma as an element in BPM.

2.4 Business Process Reengineering

Business process reengineering (BPR) is a process management concept born in the early 1990s. The BPR concept (see Figure 2.7) is usually attributed to Michael Hammer and James A. Champy and their blockbuster book: "Re-engineering the corporation: A manifesto for business revolution" (Hammer and Champy, 1991). The catch line from this book was the title of Hammer's Harvard Business Review (HBR) article from 1990: "Re-engineering Work: Don't Automate, Obliterate" (Hammer, 1990). Hammer's claim was that companies did not obtain productivity gains from their IT investments because all they did was automate old, inefficient processes. What was needed instead was a complete redesign of the processes based on the task and available technology.

This new idea about radical change was rapidly disseminated in business. However, towards the end of the 1990s, BPR got a bad reputation, partly because it was used in large downsizing projects leading to layoffs, and partly because many of these high risk projects lead to large-scale disaster for many companies. Often these projects also involved implementing complex global ERP systems and several cases of implementation failures happened.

One month before Hammer's HBR paper was published, Thomas Davenport published a similar paper in the Sloan Management Review entitled "The New Industrial Engineering: Information Technology and Business Process Redesign" (Davenport and Short, 1990) and later the book: "Process Innovation: Reengineering Work Through Information Technology" (Davenport, 1992). This was a profound book, but the concept of process innovation was forgotten in the BPR hype.

The BPR ideas are still valid. However, Hammer deemphasized the reengineering dimension and focused on the importance of the customer-oriented business process in his more recent book: "The Agenda" (Hammer, 2001).
2.5 Business Process Management

As we previously mentioned, the concept of BPM as it is known today has been referred to as the third wave of process management by Howard Smith and Peter Fingar (Smith and Fingar, 2003). As we also mentioned, the first wave of process management has its origin in Taylor’s theories on scientific management from the 1920s, where the business process was implicit in the work practices, and processes were standardized but not automated. The second wave of process management began in the 1990s, where business processes were automated using enterprise resource planning (ERP) and other standard systems. In the third wave of process management, the business process is freed from its concrete castings and is made the central focus and building block of automation and business. The ability to change processes is the primary goal because adaptability is much preferred over optimal process design. The entire value chain is continuously improved and optimized using agile BPM.

Although BPM has focused on automation and technology in the past, the concept is gradually becoming more and more of a management-oriented concept.
As the technology becomes more mature, the management aspects of BPM become of major importance. According to Gartner: "BPM refers to a set of management disciplines that accelerate effective business process improvement by blending incremental and transformative methods. BPM’s management practices provide for governance of a business process environment toward the goal of improving agility and operational performance. BPM is a structured approach that employs methods, policies, metrics, management practices and software tools to manage and continuously optimize an organization’s activities and processes" (Gartner: Cantara & Hill, 2008).

From this perspective, good process management uses an iterative process revision cycle, beginning with the business case for improvement (see Figure 2.8).

The business process lifecycle enables continuous improvement of business processes while supporting evolving business conditions. The model uses eight distinct process improvement phases. Although the figure depicts these phases in a cycle, BPM initiatives can begin in any phase and can progress through any of the other phases in any order. The steps shown in Figure 2.8 include:
Discovery identifies the intricacies of how a process executes. The value of the discovery methodology comes from how quickly and accurately an organization can establish consensus among process stakeholders as to how work is accomplished and how to measure success.

Modeling is valuable because it shows easy improvement opportunities, or at least the scale of the problem. Modeling helps business leaders collaborate regarding how the process improvements will help achieve corporate goals, irrespective of organizational boundaries.

Simulation reveals bottlenecks that are not obvious during static modeling. Making adjustments to workflows or decision points provides fine-tuning in the process model before moving to the next phase of real-time process execution.

Deployment then creates detailed process execution scripts and makes the required changes in systems. Training and facility changes that are needed for the new process to work must be coordinated. System changes include integration with applications and databases and may include the conversion of application systems into sets of reusable web services components.

Execution is where the main value of BPM is realized, because it’s where the actual improvement in the process is first seen.

Monitoring collects information from the executing process in real time. Because the BPM suite supports manual and automated activities, monitoring is more complete than what was previously available. Because it is collected in real time, it allows immediate corrections to take place.

This model can be seen as a natural refinement of legacy process management models.

2.5.1 The Concept of Reference Models

Because process models have become embedded in the BPM approach, the idea of a reference model or best-practice has emerged into BPM. Reference models can be thought of as templates from which process models may be developed. Reference models are often developed by
associations of professionals. Therefore, they are quite knowledge-intensive. Examples of reference models include the APQC Process Classification Framework (PCF), the Information Technology Infrastructure Library (ITIL), or the Supply Chain Operations Reference model (SCOR) (see Figure 2.9).

Most of the reference models, for example the SCOR model, also include standardized key performance indicators (KPIs) for the processes, and possibly also benchmark opportunities.

2.5.2 The Concept of Process Maturity

The idea of process maturity goes back to Phil Crosby, one of the fathers of the TQM movement. One of the early maturity models was developed at the Carnegie Mellon Software Engineering Institute and was called Capability Maturity Model (CMM). CMM was originally intended as a tool to assess contractors’ ability to deliver a contracted software project. This model was later generalized into the most widespread maturity model: the Capability Maturity Model Integration (CMMI). CMMI is a process improvement approach that provides organizations with the essential elements of effective processes.

The five CMMI maturity levels are the most basic measure of process maturity (see Figure 2.10).
Today, literally hundreds of different maturity models exist. Examples include: Hammer’s Process and Enterprise Maturity Model (Hammer, 2007), Michael Roseman’s Business Process Management Maturity (Jeston and Nelis, 2006), and Gartner’s Maturity Model in Figure 2.11.

Figure 2.10 The Five Maturity Levels of the Capability Maturity Model

Figure 2.11 The Six Phases of BPM Maturity (Gartner: Olding, 2008)
The model identifies six phases of BPM maturity. According to Gartner: “An important message of the maturity model is that it is highly impractical to jump ahead in maturity or to essentially skip phases to reach an advanced stage for better results. Generally this fails, and if attempted, usually damages the ability to go back to a sound effective sequence and gain the required participant support yet again, to do the right. Following the pragmatic pattern is smart” (Gartner: Olding, 2008).

2.5.3 Process Management Systems

If we want the processes to be executed, we also need a management framework for executing the strategies. One of the most widespread management frameworks has been developed by Kaplan and Norton, and models include the Balanced Scorecard and Strategy Maps.

In a recent article in the Harvard Business Review, Kaplan and Norton (2008) propose a comprehensive framework for the management process related to executing a strategy. Their framework consists of the following five steps:

1. **Develop the strategy**
 - Define mission, vision and values; conduct strategic analysis; formulate strategy

2. **Translate the strategy**
 - Define strategic objectives and themes; select measures and targets; select strategic initiatives

3. **Plan operations**
 - Improve key processes; develop sales plan; plan resource capacity; prepare budgets

4. **Monitor and learn**
 - Hold strategy reviews; hold operational reviews

5. **Test and adapt the strategy**
 - Conduct profitability analysis; conduct strategy correlation analysis; examine emerging strategies

This model, shown in illustrated form in Figure 2.12, helps keep operations linked to strategy and thus defines the context of business process management.
2.6 The Future of Process Management

What you have seen so far is the history of process management. With this perspective in mind, it is obvious to think that BPM will have its 15 minutes of fame, and then be gone in a sea of oblivion. It is certainly clear that BPM will be replaced by new process management concepts in the future. What will they look like, and will the achievements be jeopardized?

As processes are becoming more and more automated, the management of processes will become automated as well. Business Process Intelligence is one of the emerging areas of research with tremendous potential. Research in business process intelligence will eventually enable the evolution of technology to support autonomous processes, and, in the end, we will be looking at intelligent business processes.
When companies get to the point of developing intelligent business processes, the value chain will consist of loosely coupled business processes, and the role of humans will be to strategize and develop and manage relationships with other human players in this value chain.

Will this evolution jeopardize the work done on BPM? No — the maturity and the progress made will be the foundation for advancing even further. The technology and the problems may change, but the principles will be the same.
"Strive for continuous improvement instead of perfection."
– Kim Collins

10 Continuous Improvement
Dirk Neudert, Mark Scavillo

The continuous improvement phase is described as a fourth step because this phase embodies the entire concept that is BPM — as described in Chapter 7, The BPM Strategy, as the continuous analysis, design, implementation, execution, and monitoring of business processes. The continuous improvement phase highlights the principle that BPM is not a one-time project initiative but rather a philosophy that must be embedded in an organization to be successful.

A company is ready to start with the continuous improvement phase after one cycle of the transition has been successfully completed and any necessary adjustments to the BPM approach have been made. In this phase, all of the steps described in the previous chapters (strategy, setup, and transition) are adjusted and repeated regularly, ensuring that BPM becomes institutionalized. This is similar to the approach defined by Norton and Kaplan and discussed in Chapter 2, Section 2.5.3, Process Management Systems.

The continuous improvement phase (see Figure 10.1), like any business process, can also include improvements to the overall BPM approach. This chapter will briefly describe four possible building blocks that can be added to those already introduced:

- Process-based rewards
- Expanded corporate process reporting
- Process-based budget and cost allocations
- Process audits
These building blocks do not necessarily have to be included in the continuous improvement phase. Based on the building blocks chosen at a specific company, and the fit-gap analysis performed, some of the building blocks discussed in this chapter may have already been implemented in the organization during earlier phases. Or, some may not be wanted or seen as necessary.

10.1 Process-Based Rewards

As mentioned in Chapter 7, The BPM Strategy, linking BPM to the corporate strategy increases awareness and understanding of the benefits of BPM. In a similar fashion, linking BPM activities to performance objectives provides employees with a much better picture of how their individual performance supports process performance and, therefore, the corporate strategy.

This link also reinforces the importance of BPM to the organization. For example, a process owner with a dual role as head of a business unit will be able to prioritize annual activities more clearly with rewards targets.
that include process performance goals. Without this reinforcement, employees may find themselves with annual rewards targets that conflict with process management goals, damaging the progress a company is making towards becoming process-oriented.

A number of process-based goals exist that can be included in an individual’s performance objectives. The most common is meeting specific annual process performance targets, for example a defined customer satisfaction result. However, process improvement project targets or process maturity targets are also possible.

It is important to ensure that the agreed upon individual performance objectives clearly tie into the process performance objectives and the corporate strategy.

10.2 Expand Corporate Business Reporting

Even if a company has completed a successful BPM transformation, the biggest advantage comes afterwards when the monitoring and reporting of these processes proves their performance.

This data is the basis to detecting and deciding on further improvement potentials or needs. It proves the successful design and implementation of processes by matching the expected results with the AS-IS performance. This information is relevant for business and IT. It will be able to optimize the supporting IT-architecture, systems, and services, and business is able to continuously improve the business process, organizational structures, and skills of process executors. All of these aspects should be covered by a good BPM methodology (see Chapter 8, Section 8.3.1, BPM Methodology).

To get into a real lifecycle, it is necessary to continuously monitor the process at specific measurement points (see the RUN/MONITOR phase in Figure 10.2). These were already defined and implemented during the design and implement phases. Now this performance data can be analyzed by using appropriate tools available on the market. During this analysis, it is possible to detect bottlenecks and cost drivers, or to derive improvement potentials for processing time and quality aspects of the
Continuous Improvement

This information can be used at different levels of granularity and can be reported to decision makers.

Following this procedure model, processes can be continuously improved based on the needs of the company (depending on the level of change, it can initiate a full reengineering lifecycle — see Figure 10.2).

10.3 Process-Based Budget and Cost Allocations

Process-based budget and cost allocation focuses on the end-to-end processes and not on functional units. Depending on the size and history of an organization, this may be one of the more difficult building blocks to implement.
Two types of budget and cost allocations are possible:

- Centralized allocation to process projects
- Allocation to the business processes themselves

The centralized allocation of budgets to process projects relates to the funding of process activities. Because project budgets are sometimes distributed among various business units in a company, with each unit defining its own project priorities, the risk of redundant or competing process improvement projects might exist.

By centralizing the funding of these process activities, a company can ensure a more coordinated effort in improving processes and reduce the likelihood of duplicate efforts significantly. In addition, centralized budget allocation ensures that only process activities take place that align with the company’s goals.

This centralized allocation can be performed by a specific decision-making body, for example the process steering committee, based on the strategic process plan. The funds can then be provided to the designated process owners or process centers of excellence that have the task of executing on the process activity. In this case, the funding can always be tracked centrally, ensuring that company resources are used properly and aligned within the organization.

The method for allocating budget and costs to business processes depends on the type of organization you have (see Chapter 9, Section 9.1.2, Assign Process Ownership). In the influencing process organization, this type of allocation would be too difficult to implement because the processes are not owned end-to-end, but instead parts are owned by each of the organization’s functions. In the pure process organization, functions are more or less non-existent, so an allocation to the processes is required. This type of organization already has costs allocated to the processes and has process owners that have full responsibility for the budgets of their respective processes.

A matrix-process-organization has a mix of budget and cost allocation. Functions will require their own budgets because they will continue to generate costs, for example employee salaries. However, processes and
their process owners will also need budgets. In this type of organization, a “balance of power” has to be ensured so that functional heads and process owners are allocated the appropriate amount of budget to complete their tasks, without competing with one another for more funding.

10.4 Process Audits

One type of audit has already been introduced in this BPM Roadmap — the process maturity analysis. The purpose of this audit is to determine whether processes on which the organization is focusing are reaching a higher level of maturity than planned. The results of this audit are included as one criterion for determining the process project portfolio.

Although the process maturity analysis can be conducted by a process center of excellence, a process-oriented organization can also implement other audits that can be performed by the company’s internal audit department. The audits can be broken down into two types:

- Process improvement project audits
- Process compliance audits

The first type of audit involves the assessment of process improvement projects to ensure that they follow standard BPM guidelines and methodologies established by the company. The second type of audit has a much broader scope. Process compliance audits can include assessing the use of standardized processes in an organization’s subsidiaries, or testing standard process controls as required by the SOX Act, Section 404.

Both types of audits should provide comparable results and transparency on an enterprise level. And as with the other building blocks mentioned in this chapter, audits also underscore the importance of processes and process-thinking in an organization. They help support the process governance structure that is vital in ensuring a uniform business process management approach.
10.5 Summary and Key Points

The four main steps for transforming a company from functional to process-oriented have now been described. During continuous improvement, the steps are continuously reviewed and adjusted to ensure that BPM continues to support the overall corporate strategy.

The following key points should be remembered:

- Because continuous improvement is a repetition and improvement of the previous BPM tasks discussed in Part 2, the fit-gap analysis (discussed in Chapter 7, The BPM Strategy) should be continued to determine what building blocks to adjust and what new building blocks to add.
- Process-based rewards will only work if they are directly linked to the overall corporate strategy.
- The best way to allocate budget and costs depends on the company’s organizational structure (influencing process, matrix-process, or pure process).
- Process audits should enhance existing audit activities, such as the process maturity analysis, rather than replace them.

We’ve now discussed the four “core” steps of the BPM Roadmap. In addition, a few key “supporting activities” have to be completed during the overall BPM transformation. These activities will be discussed in the next chapter.
15 SAP’s View on Business Process Management

Wolfgang Hilpert, Ann Rosenberg, Thomas Volmering

We will now explore SAP’s view on BPM and the next architecture stage. This chapter will include an explanation of the value of SAP Business Suite and BPM for business network transformation, including SAP’s customer process innovation approach. The view is provided from a vendor perspective.

15.1 Innovation Without Disruption

The goal for SAP Business Suite is to deliver a holistic, integrated, business-user focused software suite that enables customers to advance from the enterprise architecture maturity stages of business silos, standardized technology, and optimized core to business modularity, where strategic agility is enabled.

With the SAP Business Suite 7.0, a new model is used for developing and shipping innovations. This new model is based on a stable core release and innovation via enhancement packages that, in addition, are facilitated by delivery of enterprise services and process components as business content of the Enterprise Services Repository (ESR), the central place for SOA design governance. SAP ships all new functionality for SAP ERP as optional enhancement packages. The Switch and Enhancement Framework is the backbone of SAP ERP enhancement packages and SAP’s industry solutions. Goal of this new technology is to reduce upgrade and test effort by using modification-free and "switchable" enhancements to leverage SAP’s enhancements or build your own enhancement package. Support packages for the stable core are shipped in addition and are strictly separated from the enhancement packages.
The value of this delivery model is to make innovations accessible more quickly, and to be able to implement them more quickly, while minimizing the risk of affecting existing functionality. This lets you benefit from new functionality without being forced to apply a release update. In addition, you can select only those new functions that are required for your business.

This new model also supports the move from the traditional architecture to an enterprise services-oriented architecture, as illustrated in Figure 15.1.

This new enterprise service-oriented architecture is divided into two parts:

1. The first part, Application Core Processes, represent the core part of the application that support processes that are stable, not frequently changed, and for which reliability is a key. This will, depending on the company type, cover 70% to 80% of the company’s processes.

2. The second part, Composite Business Processes, corresponds to the processes that support strategic agility and speed to market, which comprises 20% to 30% of the company’s processes. That means that pro-
cesses that use enterprise SOA are of substantial value because the goal of enterprise SOA is to enable the implementation of innovative business processes spanning multiple SAP Business Suite applications in an efficient and consistent way, via composition or integration of processes based on enterprise services and events.

This new software model supports the shift from standardized technology and a business-optimized core to business modularity, which will support speed to market and strategic agility, and prepares us for the next phase of *dynamic venturing*. A key factor for achieving this goal is a business scenario-oriented approach to application development.

With the business scenario-oriented approach, end-to-end scenarios have to be identified and defined before architecture is defined and development starts. This applies both to new development and to harmonization of existing solutions supporting the company processes.

First, the business scenarios must be modeled at a customer-oriented level of abstraction. Then, the business scenarios must be mapped to components in a system landscape. The results of this step are *deployment scenarios*. Finally, the architecture is defined based on the business and deployment scenarios.

For application architects and developers, scenario orientation means first of all that they have to know and understand the scenarios to which their application components contribute. This is required to ensure an outside-in approach.

15.2 Business Network Transformation

This section will help you understand the strategic direction for BPM from an IT point of view. SAP has been a facilitator of business for more than 35 years by helping streamline IT for companies worldwide. However, business success and company growth today are not limited to implementing standardized software, but to achieving competitive differentiation in business. The latter requires speed in putting innovative business models to work. As technology and business converge, IT has to enable and anticipate new types of business model innovation.
Getting IT to support business model innovation is the next big challenge for IT. One way to get there is business network transformation. Just what the transformation is — and its relationship to business model innovation and enterprise SOA — is worth considering.

The high-functioning and flexible business network will be the new source of competitive advantage. Companies can grow their markets and compete more powerfully by innovating their business models and off-loading tasks not core to their business to other members in the network — and vice versa.

Enterprise SOA is the evolutionary way to make IT work for business network transformation with the lowest risk to the business. It is the perfect basis for business model innovation and network transformation, especially in heterogeneous IT environments.

It is also the architectural enabler of business network transformation, the way both the members and the processes in the network communicate with each other — through services.

Enterprise SOA is an enabler of BPM, and at the same time, BPM provides sustainable value on top of a service-enabled platform:

- Business process transparency (content)
- Business process flexibility (applications and composition tools)
- Business transformation (methodology) with SOA as technology enabler

15.2.1 The Evolution of BPM

Traditionally, BPM has been perceived as divided into two distinct “functions”: BPM as a management discipline that helps business organizations standardize and continuously optimize operational processes that have the largest impact on achieving corporate performance goals, and BPM as a technology (or software product) that provides IT organizations with a framework of tools to model, deploy, and execute processes that include human and system tasks (e.g. workflows) or that span across different business applications and require a broad set of integra-
tion capabilities (e.g. messaging, transformation, and adapter technology) known as Enterprise Application Integration (EAI).

In today’s business world, innovation and strategic business transformation require new methods and software products to differentiate organizations from their competition. The next generation of business best practices thus require an integrated, holistic perspective on BPM (“BPM 2.0 and beyond”).

Resulting needs include the following:

- Establish an “end-to-end view” of business processes across the value chain.
- Standardize the core business functions that are stable rather than dynamic. At the same time, enable flexible composition of differentiating process behavior that is dynamic rather than stable.
- Act agile and flexible on business changes, leveraging business services (enterprise services) from the platform.
- Involve business users in processes in a visible and controlled fashion (preventing “shadow IT” and departmental solutions that are not integrated and controlled).
- Extend the business process context from transactions to holistic business process scenarios including processes, tasks, and events, as well as end-to-end process monitoring and analysis functions.

From a market perspective, the evolution of BPM in the context of enterprise SOA requires the following:

- Comprehensive support for model-driven process execution for all process dimensions (whether they are human- or system-centric, established supply chain procedure or agile business practice, or business or IT driven).
- Standardized business content at all levels of process abstraction and for multiple personas in a company.
- Advanced process management tools from enterprise modeling (conceptual planning of business, IT, and information architecture) to process governance and implementation.
Support of business process analytics comprising business process monitoring (single instance), simulation and optimization capabilities, as well as business activity monitoring (business process and event driven on multiple process instances, end-to-end).

15.2.2 Challenges From an IT Perspective

On their way to prepare for the next wave of business transformation, most organizations face different challenges in adopting new business and IT principles. First and foremost any shift in a company’s IT and business architecture (as enterprise SOA) requires an in-depth understanding of the core processes that have been standardized in the past or that need to be further standardized in current or future global and local markets.

Process analysis therefore helps to understand how far business processes are fragmented in disparate silos of heterogeneous application landscapes, how many departmental solutions exist, and how often homegrown workarounds in IT (shadow IT) or inaudible individual business solutions are implemented. To free up all potential forces that might be leveraged, organizations have to get process-oriented, including a mind shift in the understanding of business and IT roles and functions. A new breed of business and IT professionals — the business analyst and business process expert — is concerned with working jointly on overcoming these challenges.

Example

For a long time, companies have been running their business by a set of policies, responsibilities, and regulations that are maintained in unrelated systems or tools. Growing a business, as well as growing competition requires a shift of gears in innovation. Fragmented business processes and their control mechanisms lead to prohibitive factors for implementing a culture of "change". These factors are:

- Lack of transparency
- Lack of productivity, automation, and efficiency
- Lack of process flexibility
By “lack of transparency”, we mean the following issues and questions:

- Business and IT departments are unaware of the bigger picture — no common process repository exists.
- No process governance exists that allows the alignment of business requirements (written or modeled functional specifications) and IT tasks (technical and architectural papers).
- Which business services can be mapped to technical “enterprise services”?
- Which tools can be used to cover processes that are driven and owned by business users in conjunction with a technical infrastructure that is capable of being a backbone for process automation?

By “lack of productivity, automation, and efficiency” we mean the following:

- Information workers lose time by manually working on tasks (e.g., escalating issues).
- No automated way exists to execute and track process parts; instead non-integrated, uncontrolled departmental solutions that cause prohibitive costs and in transparency are used.
- Meaningful data about processes, business activities and events are hidden in disconnected silos of applications or in single IT workarounds.

Finally, “lack of process flexibility” refers to these issues:

- No means exist to innovate business processes without disruption of the core business processes.
- No technical environment exists to extend standardized core processes at defined points of extensions (before, after or in-between a core process).
- No collaborative modeling environment is available to drive process changes flexibly from business to IT via comprehensive change management.

To break the boundaries of prohibitive costs and gaps to become more process agile, “company X” will need to address key questions in a cross-functional team:

- What is a definition of “business process” that is accepted corporate-wide?
- What are the core business processes that run the company and that can be standardized with packaged applications?
- How can the needs to integrate and automate processes across the value chain be addressed from a technical standpoint?
- How should you design innovative processes that enable collaboration between information workers to lower the cost of processes (standard and exceptions)?
15.2.3 What Is a Business Process — A Definition

From a technical perspective, a business process is defined as “a set of linked activities that creates value by transforming an input into a more valuable output,” SAP differentiates a business process further into two basic subprocess types:

- Application core processes
- Composite business processes

Application core processes are delivered via SAP’s business application as part of the SAP Business Suite. These processes are pre-defined and packaged, and can be customized in applications such as SAP ERP, SAP PLM, SAP SCM, SAP CRM or SAP SRM. By nature, these processes represent the core business functionality that “run the business” operations from financials, controlling, and human resources to materials management, procurement, and sales order management to supply chain and customer relationship management. These packaged processes are exposed as reference content in ESR and SAP Solution Manager to provide process insight and transparency into what is covered within business applications (discover and design) and how this can be used to extend the core set of highly standardized business operations for reasons of process efficiency, innovation, and differentiation (extensibility). Embedded collaborative process steps are usually implemented in SAP Business Workflow and therefore seamlessly integrated.
Striving towards a certain degree of process standardization, most organizations face the need to do the following:

- Integrate the core processes with their legacy data sources, third-party applications and business partners (B2B) and within the setting of distributed SAP application landscapes with each other (A2A).
- Compose new innovative business processes at the edge of the application core that are dynamic rather than stable and that deliver a high degree of competitive advantage at the departmental level or in local or global markets.

Application core processes represent business process best practices. Composite business processes are practices that can, over time, also evolve into the application core. Composite business processes are either human-centric (collaborative) or system-centric (integration process).

The nature of composite business processes is to enable business process composition at the edge of the application core. They are driven by functional business requirements and specifications, and their goal is first and foremost to provide added business value, speed and quality of exception handling, and delivery on the promise of innovative business ideas to improve efficiency and have a sustainable process improvement impact.

Technical processes supporting system-to-system (S2S) and system-to-human (S2H) type of interactions are defined as system-centric. System-centric composite processes are implemented to define, control, and monitor complex integration scenarios that reach beyond application systems or enterprise boundaries. An integration process is an executable cross-system process for processing messages and automating the message flow within the context of a service orchestration. In an integration process, the process steps and step types are either message flow-oriented (e.g., send, receive) or control flow-oriented (e.g., fork, switch, wait).

Typical patterns of integration processes (e.g., collect, split, merge) or technical communication patterns (sync/async bridge) are delivered as templates to support efficient implementation.
As the very nature of integration processes is to enable message-flow automation, human interaction (apart from alerting administrative attention caused by exception handlers and modeled compensations) unsurprisingly takes place as human call-outs in the sense of generic user decisions (decide on the state of the process: yes-or-no decision gateways) or leveraging fully implemented application workflows or tasks as (business) services via defined service interfaces.

Human-centric composite business processes focus primarily on cross-system and cross-organization types of processes. Today’s business requires information worker enablement with flexible business processes that span organizational and system boundaries and involve people in distributed, heterogeneous environments. Although these processes are primarily driven by business users and business activities, they combine user activities (with UIs, or via tasks in a task list) and automated activities (either single service-enabled activities or modeled integration processes for mediation purposes such as, for example, automated data consolidation).

The latter kind provides further flexibility with respect to spanning processes across multiple systems and organizational boundaries. They can be combined with integration processes to trigger system-related activities. Composite business processes need to provide ad-hoc capabilities to react quickly and flexibly to changes in the business or critical business events in out-of-bound situations.

Applied business process flexibility with support of process debugging, simulation, embedded change management, and the principle of "process design as a process" is the higher art of process management that this capability needs to supply.

Which Business Problems Can You Solve Today?

The need to manage business tasks from automated business processes — whether they stem from standard application core processes or workflows extending the application — caused the development of central task lists that enable business users to work on their daily tasks and receive notifications and alerts in one unified task environment. Extensibility towards other systems, for example, home grown or third-party...
solutions, needs to be supported to manage not only SAP application
tasks but also other task types.

Integrating and automating the message flow between business applica-
tions in A2A and B2B scenarios is the basic requirement that led to
extensions of standard middleware products in the application integra-
tion realm to support process integration. Standards like Business Pro-
cess Execution Language (BPEL) evolved to support message-based web
service orchestration to automate how different business systems could
be integrated with the help of an executable flow model. Because only a
limited number of business processes can be completely automated
without any human interaction before, after, or in-between, basic
human interaction patterns (e.g., approve, alert, or compensate) need to
be supported even in these system-centric integration processes.

Therefore, manage by exception is the requirement to involve business
users in automated processes. The human interaction is primarily
focused on technical or business alerting of critical process exceptions.
The next pattern is concerned with human approval of the state of busi-
ness data in an automated process instance (e.g., approve the merged
data of sales orders in a multiple sales order management scenario, or
approve the new supplier that has automatically been identified in a
compensation action). Companies who have implemented supply chain
production workflows embedded in their applications might also want
to leverage this investment by combining automated message flow han-
dling with triggering tasks or workflows as services.

Workflow automation in the context of business applications (embedded
workflow management) requires strong integration of production work-
flows with the core objects delivered with the application (e.g., the sales
order business object). SAP applications deliver a rich set of workflow
templates that can be implemented as part of the customizing activities
in the implementation project.

How Do We Solve These Business Problems Today?

Cross-component BPM (delivered with SAP NetWeaver PI) handles pro-
cesses where the message flow between different business applications
is dependent on several messages, or on time and business actions or re-
actions. Interdependencies can be defined using an internal state derived from content of incoming messages. Messages belonging to one process instance are identified by correlations as common denominators on the basis of message content (e.g. a purchase order, an ASN, a confirmation, and an invoice in a procurement process via the order ID in combination with the business partner ID or company code). Cross-component BPM also supports handling of system exceptions and alerting.

SAP Business Workflow

SAP Business Workflow has been embedded in the heart of the SAP solutions, so that SAP applications (including SAP CRM, SAP SRM, and SAP ERP) are built on it to incorporate workflow features directly in their application. Integration with organizational management and standard SAP reporting tools allows reusing the investment that companies have made in SAP solutions.

Universal Work List

Universal Work List’s (UWL) work-item inbox or task list is the watering hole where users access their workflow “to-do” lists. Work items that appear in these inboxes can span a range of business activities, from administrative processes such as a vacation request to more in-depth processes such as the evaluation of a sales opportunity.

A task list must be simple enough for an employee who periodically uses it to, for example, approve a vacation request. But specialist users have very different needs: their inboxes must be able to handle perhaps 100 work items a day for a particular business process. They need advanced capabilities, such as viewing the process audit trail (showing who did what, and when), creating attachments (explaining why a particular decision was made), or adding information for participants downstream. Sorting, resubmitting, and grouping work items also helps in prioritizing processes for faster information flow.

You can deploy different inboxes for these different types of users for each business process. But given the number of processes in which casual users might participate, this could mean a proliferation of inboxes, each requiring training and support. The UWL helps to reduce the number of inbox types (and training for those inboxes) without cramping the user’s style or compromising the supplemental information specialists require. It provides central access to tasks.
As mentioned previously, the layers of integration process, embedded workflow, and task list can be seamlessly integrated to cover process automation with human call-outs, as well as application-embedded workflow automation.

End-to-end business processes are seamless combinations of different types of processes, including:

- **Core application or platform processes**
 Provide proven standard business practices and are delivered by SAP’s applications. These packaged processes are built to satisfy a high demand for integration, integrity, and legal compliance, and are typically mission-critical. They are designed as an integral part of a business process platform.

- **System-centric integration processes**
 Include A2A and B2B interactions, legacy systems, or third part system integration. These processes are delivered technically through SAP NetWeaver PI.

- **Human-centric composite processes**
 Focus on human interaction and process collaboration, decoupling tasks, user interface definitions, rules, events and services from an executable business process model to facilitate a high degree of flexibility and transparency. These processes are delivered through a new building block of BPM capabilities as part of SAP NetWeaver Composition Environment: SAP NetWeaver Business Process Management (BPM).

All of these types of business processes interact seamlessly through services and events.

15.2.4 Building Blocks of SAP NetWeaver BPM Capabilities

Figure 15.3 shows the building blocks of SAP NetWeaver BPM capabilities.

SAP NetWeaver CE will support a standards-based modeling environment (Business Process Modeling Notation [BPMN]), process design collaboration, semantic integration with SAP’s application core processes, human interaction management that provides task management, rule and responsibility assignments, and business event resolution mechanisms.
Enterprise Services Repository (ESR) The Enterprise Services Repository (ESR) is shipped with SAP NetWeaver PI 7.1 and SAP NetWeaver CE 7.1. As an evolution of the SAP NetWeaver XI Integration Builder, it does not only contain enterprise services (service interfaces, service operations) and data types, but also tools to cover the integration needs of a SOA middleware (e.g., a mapping editor, or a BPEL integration process editor) Apart from this, the ESR is used as the central place for process component architecture modeling with SAP modeling methods and content for enterprise SOA.

SAP Enterprise Modeling Applications by IDS Scheer As an optional building block, companies using SAP software can leverage SAP Enterprise Modeling Applications by IDS Scheer (see Figure 15.4) to sustain large scale enterprise modeling projects. Enterprise modeling moves beyond conceptual business process analysis towards planning
and governance of the corporate business architecture (business architecture, enterprise IT architecture, and information architecture; see definitions in the text that follows).

Business Architecture (ARIS Business Architect) includes planning and documentation of processes with several levels of detail. It supports governance of business processes and promotes their standardization across organizations. Furthermore, process simulation and optimization on a conceptual KPI level is facilitated, as well as process performance management on application transactional data.

Enterprise Architecture (ARIS IT Architect) enables customers to plan their IT and enterprise architecture with the help of standardized architecture frameworks, for example TOGAF. Aligned with process models of the Business Architecture, an integrated overview of processes and IT landscapes (down to software components and applications systems) can be achieved.

Information Architecture (ARIS BI Modeler) contains the re-documentation of information structures of SAP NetWeaver BI. SAP NetWeaver BI data structures and data flow can be connected to business process models in one central ARIS repository.
The following basic integration and interaction points are offered from and to the SAP domain: **Transactions**, which are reference content of process configuration variants delivered with SAP Solution Manager.

The transactional view of business scenarios, business processes, and process steps supports the configuration and implementation of SAP solutions based on best practices. SAP implementation content can be synchronized with ARIS for model alignment to the business architecture of the company (value chains and below) and, furthermore, to drive upgrade or initial implementation projects with the help of business process models.

In addition, future integration with ESR-based process components and enterprise service definitions will be achieved via standards and APIs.

15.2.5 Changing Value Proposition of Reference Models

During the 1990s, SAP developed a set of reference models for SAP R/3 based on ARIS event-driven process chains (EPC). By nature, these models were graphical process flows describing process scenarios, processes, and SAP transactions as functions in informal modeling to enrich the documentation and to enable business engineering. These models (around 9,000 in number) served as the foundation for implementation methodologies such as, for example, accelerated SAP (ASAP) and tools such as the SAP Business Explorer to visualize processes in an SAP environment.

As the complexity of process modeling projects at companies was increasing, SAP retired the SAP reference model as of SAP R/3 release 4.6 and invested in simplification of the modeling method to build reference models.

Today, SAP Business Suite implementation content delivers a set of configuration variants that enable process-driven implementation projects with SAP Solution Manager. Although the swim lane diagrams look different, they were developed as ARIS EPCs in column display to enable a seamless integration with business process analysis tools such as, for example, ARIS for SAP NetWeaver. SAP implementation content represents a semi-formal modeling approach, because modeling entities are bound to transactions and Customizing objects in SAP solutions.
The next generation of reference models will be delivered with the ESR. Process component architecture models enable SOA governance and model-based design of service-enabled business applications. These models represent a formalized modeling approach, because the modeling entities (process components, enterprise services, service operations, and global data types) are deployed based on the models in the application platform.

Upcoming releases of the SAP NetWeaver CE will be able to leverage a business process model representation of process components to facilitate modeled process composition and extension of the application core via defined extension points of a packaged service-enabled business process.

15.2.6 Composite Business Processes

SAP NetWeaver Business Process Management (SAP NetWeaver BPM) is a new component of SAP NetWeaver CE. As of enhancement package 1 of SAP NetWeaver CE 7.1, the integrated composition environment will contain capabilities to model, connect, compile, deploy, and maintain composite business processes. These capabilities will be split into main building blocks (see Figure 15.5):

- Process Composer
- Process Server
- Process Desk

The Process Composer will be seamlessly integrated into SAP NetWeaver Developer Studio as a separate perspective and provides BPMN-based process modeling capabilities. BPMN is based on the specification adopted by the Object Management Group (OMG). This notation allows easy and intuitive process modeling for both business analyst type of users and developers in one common environment. The Process Composer will support all stages of process modeling from high-level definitions of the process down to the enrichment for the actual development into deployment and execution. Lifecycle aspects (versioning, transport, etc.) are fully supported through SAP NetWeaver CE. SAP’s BPM notation differentiates activities into human and automated activities. Those
activities can be structured within nested processes (subprocesses). Human activities normally trigger tasks that are executed through end users, whereas automated activities allow executing web services and therefore provide full integration into SAP’s enterprise SOA-enabled business applications.

The Process Desk represents a building block for task management, UI and forms integration, rule definition, and event resolution. Task management provides capabilities for end users to access, investigate, and execute on tasks assigned to them. Task management will also be integrated into existing assets such as UWL, which is already successfully deployed. SAP’s UI technologies, such as Web Dynpro and Interactive Forms, can be integrated for the end user interaction within the modeled processes. Rapid UI prototyping capabilities will enhance and speed up the design and specification of process interaction components. These UIs can be generated out of the modeling artifacts of the process (process context).
15.2.7 Embedded Business Rules Management

BPM and business rules management have co-existed for many years, but there is no single vendor who offers a process modeling and management experience that delivers automated decision making and business rules management as an integrated experience.

The Situation Today

Rule engines and Business Process Management Technology can be integrated, in a very loose fashion, through service calls or direct Java method call integration.

Business rules are organizational assets that will need to be managed and reused in a coherent fashion, like any other asset such as process models, organizational models, and so on. However, because no standards exist in the rules space, BPM tools will have to rely on third-party rule management tools, increasing administration and governance costs.

No comprehensive SOA technology vendor is in a better position than SAP to deliver an integrated experience when it comes to managing processes and decisions in a logical, coherent, and unified fashion under the same platform.

Moving Towards an Integrated Business Process And Rules Management Suite

For SAP, the acquisition of YASU Technologies offered a perfect fit for SAP NetWeaver CE and the new BPM solution. As of SAP NetWeaver CE 7.1, enhancement package 1, SAP NetWeaver Business Rules Management is introduced as a new component.

SAP is planning on a staged approach to integrate business process with business rule composition, execution, and management and plans:

1. Native integration of business rules (decision tables) into process composition.
2. Additional rule sets and business user functionality.
3. Full business rules management, that is, a seamless path from composition to process to rule.
As an evolution of multiple process layers catering to different needs, a common design- and runtime layer for business processes will emerge. In our understanding, a common business process layer fulfills the following criteria:

- It offers a dynamic business process representation that can be sketched and understood by business people (BPMN). This design time representation goes across all types of business processes and their specific characteristics and supports design collaboration.
- A more detailed view of the same dynamic business process representation can be implemented by a developer persona, without the need for model translation or conversion. Execution is done by application runtime or a business process engine, depending on the nature of the respective process fragment.
- Common monitoring, lifecycle management, and process performance management (e.g., based on KPIs) is possible along the end-to-end process.

For the application core processes, the common process layer uses ESR SOA artifacts that provide deep semantic integration based on process models. Here, process component models are exposed as BPMN-based processes with defined extension points for enhancing the core process; in that sense, the common process layer provides process-oriented "business add-ins" for process composition, without touching the business application logic itself.

Harmonizing design and runtime, the common process layer will enable companies to leverage common runtime services and a central design time in BPMN both for human-centric and system-centric process modeling in a homogenous environment.

Multiple Views on a Single Version of the Truth — the Process Domain Model

The ultimate goal of process collaboration is to provide a smooth up-and-down ride between the various layers of abstraction. Structural requirements that are defined by functional specifications need to be seamlessly integrated with technical implementations. This requires the
enablement of multiple types of user roles ("personas") concerned with business processes, driving process definitions towards an executable model.

Provide Views to Collaborate with Other Stakeholders in the Process Lifecycle

Instead of transforming business-level models for execution and working in different repositories catering to different skill sets concerned with the process definition, multiple users — who perform different tasks in process modeling — work in one environment with different views (perspectives) of the domain model (that is, the physical process model stored in the database).

The focus of the correct procedural model to align business requirements with IT implementations is to define the correct "pins through the IT sandbox" as a contract between business and IT.

Thus, by providing a common "dictionary", IT can decorate metadata so that business can discover existing IT assets in a library of the modeling workbench. Business analysts or business process experts can then start modeling processes based on IT reality by discovering, reasoning over, and leveraging existing IT assets, to produce structured requirements for IT to "fill in the blanks".

15.2.8 Business Process Management Standards

To support portability and interoperability of business process definitions, SAP embraces, contributes to, and implements industry standards that have been widely adopted. The selection of standards is motivated primarily by the additional value for the respective use cases.

BPEL is one of the most widely adopted standards for design and execution of system-centric business processes. SAP has been supporting and implementing this standard since 2003, as version BPEL 1.1, and shipped it with ccBPM as part of SAP NetWeaver XI/PI and will continue to do so. This standard has recently been upgraded to WS-BPEL 2.0 and is provided through ccBPM as a preview version. Shortcomings of WS-BPEL 1.1 and WS-BPEL 2.0 are missing built-in artifacts for the integration of human interaction.
Another upcoming and recently released and published standard is BPEL4People. SAP has jointly defined this standard with our partner IBM to support the human interaction gap for system-centric processes. As part of this definition activities, SAP has also defined WS-HumanTask for a unified human interactions model through service enablement, and plans to ship this functionality as part of the new BPM capabilities.

To overcome and bridge the shortcomings between system-centric and human-centric process definitions, SAP embraced and will deliver BPMN as a process modeling notation that is agnostic of execution language artifacts (that is, it doesn’t know about the artifacts). This approach will provide a more system-independent modeling paradigm, allowing elevating modeling activities into the business domain. Because SAP has adopted BPMN as its modeling notation for future collaborative business processes, also it also plans to contribute to the shaping of this standard for the next version.

15.2.9 The Value Proposition of Enterprise BPM

SAP believes that the highest value of BPM will be achieved via semantic integration into service-based business applications.

This paradigm starts with leveraging the ESR for SOA design governance that goes hand-in-hand with a process-oriented approach towards companies’ business architecture. Business process composition with collaborative process design elevates single aspects of process management towards holistic process management, facilitating business innovation via composition. The highest art of process management includes human interaction management to explicitly manage business tasks in a process context, and actionable process analysis to drive business process optimization based on real time process data.

For this purpose, BPM is solving the most pressing challenges:

- Provide an integrated toolset for all types and dimensions of business processes.
- Enable process flexibility through ESR and semantic integration into applications.
- Enable business experts to drive innovation and process optimization.
15.2.10 Roadmap Highlights

The BPM Roadmap will be brought to the market in a staged approach, extending the functional capabilities and providing additional value for our customers. By 2010, we plan to provide BPM capabilities in three stages, as follows:

- **Further SOA provisioning**
 - The ESR and Services Registry are integral parts of SAP NetWeaver PI 7.1 and SAP NetWeaver CE 7.1. The ESR provides out-of-the-box access to business semantics (process components and enterprise service definitions).
 - Enhanced integration processes (ccBPM with SAP NetWeaver PI 7.1) for continuous performance improvements, modeling enhancements, and support for human interaction (generic user decisions).
 - First Business Activity Monitoring (BAM) infrastructure, including event provisioning and correlation mechanisms.
 - Continuous support for SAP Business Workflow and Guided Procedures.
 - Continuous application adoption of the UWL.

- **Accelerating composition**
 - In stage 2, SAP plans to deliver new BPM capabilities with SAP NetWeaver CE.
 - Orchestrating enterprise services and human activities with composite business processes.
 - Supporting the entire process lifecycle, from model, dry-run, and deploy, to execute and monitor.
 - Providing an integrated composite developer experience, including workflow, event, business rule, user interface, services, and connectivity.
 - Leveraging application process flow models for reference and extensions.
 - Including human interaction management (HIM) as an evolution of business task management and the UWL.
Integrating business rules (decision tables) into process composition.

Stage 3 Built-in process flexibility
In stage 3, SAP plans to deliver a common process layer for all process types, both for design and runtime. Deep process changes on defined extension points based on SOA by design principles will be available. Other highlights include the following:

- Actionable process analysis with drill-down capabilities into running process instances and change management capabilities (from monitoring to change request handling).
- BAM support for observed activities.
- BPM-powered situational composites.
- Full business analyst enablement, from conceptual model to execution and monitoring.
- Advanced process collaboration (horizontal and vertical persona collaboration).
- Full business process and rules management suite; that is, a seamless path from composition to process to rule.

15.3 SAP’s New BPM Methodology

SAP has introduced a new process analysis and optimization methodology called BPM Methodology. The approach covers the analysis of existing business processes, the identification of process weaknesses, and the definition of optimized TO-BE processes, as well as the transformation of automated process steps into an SAP software solution.

This approach does not focus solely on automated business processes, but also covers the analysis and optimization of all manual process steps.

The methodology comprises four phases and can — or even should — be adapted according to the project needs and goals. It has to be regarded as a guideline of how to define the optimal business processes derived from the current situation (see Figure 15.6).
Index

A
Analytics 124
Analyze phase 200, 201
Application core processes 292
APS 71
ARIS
 BI Modeler 299
 Business Architect 299
 IT Architect 299
 Platform 327
Arla Foods 269, 270
 The future IT solution 276
 The three generations 270
 The three guiding principles 277
Audiences 240

B
BPEL4People 306
Building blocks 97, 105, 107, 111, 112
Business
 Architecture 299
 Modularity 253, 287
 Optimized core 287
 Process 292
 Transformation 290
Business Activity Monitoring (BAM) 307, 308
Business excellence 38
Business intelligence (BI) 74
Business modularity 58
Business network transformation 32
Business process 154
Business Process Execution Language (BPEL) 295, 305
Business Process Innovation (BPI) 90
Business Process Management (BPM)
 21, 25, 26, 29, 31, 35, 50, 88, 89, 101, 143, 288
 Benefits 22
 Business Process Management (BPM)
 (cont.)
 Business process management standards 305
 Concept 25, 26
 Evolution 288, 289
 Implementing BPM 98, 108
 Methodology 134, 135, 136, 137, 138
 Roadmap 98, 247
 Set-up 113
 Strategy 101, 102, 103, 112
 System 65, 66
 Systems 67
 Tool landscape 107, 141, 142, 143
 Transformation 83, 238
 Transition 109, 110, 157, 158
 Business Process Modeling Notation (BPMN) 306
 Business Process Organization (BPO) 152, 155
 Business process owner 119
 Business Process Platform (BPP) 249
 Business process reengineering (BPR) 43
 Business reporting 221
 Business Rules Management 303
 Business silos 57
C
Capability Maturity Model Integration (CMMI) 47
Change management 105, 232, 233, 235, 236, 246
Cockpit 177, 179
Communication 105, 227
 Channels 239
 Plan 237
Composite business processes 293
Concept of BPM 25
Continuous improvement 219, 225
Conventions 152
Core processes 115
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Performance Management 77</td>
</tr>
<tr>
<td>Corporate strategy 102, 112, 192</td>
</tr>
<tr>
<td>Cycle time 128</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>Decision matrix 120</td>
</tr>
<tr>
<td>Decision-making bodies 118, 195, 196</td>
</tr>
<tr>
<td>Decision-making criteria 192</td>
</tr>
<tr>
<td>Deployment 46</td>
</tr>
<tr>
<td>Discovery 46</td>
</tr>
<tr>
<td>DMADV 42</td>
</tr>
<tr>
<td>DMAIC 41</td>
</tr>
<tr>
<td>Dynamic venturing 58, 287</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Efficiency indicator 129</td>
</tr>
<tr>
<td>EFQM 39</td>
</tr>
<tr>
<td>EFQM Excellence Model 39, 40</td>
</tr>
<tr>
<td>Engagement models 168</td>
</tr>
<tr>
<td>Enhancement packages 285</td>
</tr>
<tr>
<td>Enterprise application integration</td>
</tr>
<tr>
<td>Enterprise architecture 54, 55, 63, 299</td>
</tr>
<tr>
<td>Enterprise architecture framework 55</td>
</tr>
<tr>
<td>Enterprise capabilities 323</td>
</tr>
<tr>
<td>Enterprise resource planning (ERP) 67, 68, 69, 70, 73, 76</td>
</tr>
<tr>
<td>Enterprise services architecture 286</td>
</tr>
<tr>
<td>Enterprise Services Repository (ESR) 292, 298, 301</td>
</tr>
<tr>
<td>Enterprise SOA 288, 290</td>
</tr>
<tr>
<td>Enterprise systems 67</td>
</tr>
<tr>
<td>ERP/II 73, 74, 75, 76</td>
</tr>
<tr>
<td>Systems 76</td>
</tr>
<tr>
<td>European Foundation for Quality Management (EFQM) 39</td>
</tr>
<tr>
<td>Event-based management 78, 79</td>
</tr>
<tr>
<td>Evolutionary approach 109, 110</td>
</tr>
<tr>
<td>Execution 46</td>
</tr>
<tr>
<td>Extreme competition 28</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Fit-gap analysis 110, 112, 225</td>
</tr>
<tr>
<td>Flexibility 136</td>
</tr>
<tr>
<td>Functional manager 168</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>Grundfos 84, 86</td>
</tr>
<tr>
<td>Governance structure 87</td>
</tr>
<tr>
<td>Guided procedures 307</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>Human interaction management (HIM) 307</td>
</tr>
<tr>
<td>Human resource management (HRM) 77</td>
</tr>
<tr>
<td>Human-centric 293, 306</td>
</tr>
<tr>
<td>Business processes 294</td>
</tr>
<tr>
<td>Composite processes 297</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>Implement phase 207</td>
</tr>
<tr>
<td>Information and collaboration workflow 147</td>
</tr>
<tr>
<td>Information architecture 299</td>
</tr>
<tr>
<td>Information Technology (IT) 137, 228</td>
</tr>
<tr>
<td>Operations 229</td>
</tr>
<tr>
<td>Innovation 21</td>
</tr>
<tr>
<td>Interactive Forms 302</td>
</tr>
<tr>
<td>Interviews 185</td>
</tr>
<tr>
<td>IT</td>
</tr>
<tr>
<td>Engagement model 61</td>
</tr>
<tr>
<td>Organization 30, 31</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Kaplan and Norton framework 49</td>
</tr>
<tr>
<td>Key Performance Indicator (KPI) 189</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>Lagging indicators 176</td>
</tr>
<tr>
<td>Landscape 141</td>
</tr>
<tr>
<td>Lead time 128</td>
</tr>
</tbody>
</table>
Leading indicators 175
Lean Manufacturing 38

M
Mandate 170
Matrix-process-organization 223
Maturity
 Analysis 132
 Categories 132
 Feedback 186
 Levels 182
Measurement 111
Modeling 46
Modeling conventions 148, 150, 152
Monitoring 46

N
Network transformation 288

O
Operating model 60
Operational innovation 23, 24
Optimized core 57
Organizational structure 97, 106

P
Performance indicator 174
Performance measurement process 129
Prioritization matrix 191
Process 106, 116
 Activities 116
 Audits 224, 225
 Calculation 145
 Categories 115
 Consultant 119
 Cost 128
 Documentation 230
 Enablers 322
 Executor 119
 Fingerprint 205
 Governance 96
 Landscape 130
 Levels 115
 Reporting 145
 Scenarios 115
Process (cont.)
 Simulation 145
 Sub-Processes 116
 Terminology 154, 155
 Variants 169
Process Composer 301
Process Desk 301
Process innovation 21
Process Management Lifecycle (PML) 95, 200, 201
 Analyze phase 144
 Deliverables 201
 Design phase 144, 200, 203
 Implement phase 146, 200
 Methodology 200
Run/Monitor phase 147, 200, 208
Process map 115, 117, 159, 160, 161, 168
 Audience analysis 117
Process maturity 47, 130
 Analysis 130, 131, 181, 182, 184
 Questionnaire 183
Process modeling 144
 Conventions 148
 Tool 141
Process models 148, 149
Process owner 130, 162, 164, 167, 169
 New 171
 On different levels 169
 On the same level 169
 Role 164
Process ownership 96, 162, 164
Process performance indicator (PPI) 125, 126, 172, 174, 176, 177, 180
 Automated 179
 Define 174
 Manual 178
 Repository 178
Process performance manager 119
Process performance measurement 124, 172
Process publishing 146
Process Server 301
Index

Process standards committee 120, 170
Process steering committee 120
Process-based budget 222
Process-based rewards 105
Process-centric IT 227, 231
Process-driven enterprise systems 79
Processing time 128
Process-oriented organizational structures 163
Process-oriented projects 191
Product lifecycle management (PLM) 77
Project portfolio management 191
Pure process organization 223

Q
Quality 127

R
RADAR 85
Release management 161
Revolutionary approach 108, 110
Role 118
Rule engines 303

S
SAP 99
Business Process Organization (BPO) 99
SAP Business Suite 32, 249, 285, 292
SAP Business Workflow 296, 307
SAP Enterprise Modeling Applications by IDS Scheer 298
SAP NetWeaver
SAP NetWeaver Business Process Management 301
SAP NetWeaver Business Rules Management 303
SAP NetWeaver Composition Environment 298
SAP R/3 300
SAP Solution Manager 292, 300
Scientific Management 35
SCOR model 47
Service-oriented architecture (SOA) 29, 80, 81
Services Registry 307
Simplicity 136
Simulation 46
SIPOC model 38
Six Sigma 40, 41, 42, 210, 211
Tools 214
Skill profiles 105
SMART 175
Standardized technology 57
Step-by-step approach 108
Strategic alignment 53
Strategic processes 115
Supply chain management (SCM) 70, 71, 72, 78
Supply Chain Operational Reference Model 328, 329
Support processes 115
Supporting activities 227
System-centric 293, 306
Integration processes 297
System-to-human (S2H) 293
System-to-system (S2S) 293

T
Technical Operations and Product Supply (TO&PS) 319, 323, 324, 325
BPM governance 325
BPM philosophy 321
BPM vision 329
Success factors 338
Technology 26, 29
TO-BE values 179
Tools 141, 147, 148
Total Quality Management (TQM) 37
Toyota Production System 36, 37, 38
Training 105, 227, 236, 243
Audiences 245
Timeline 244
Types 244
Transformation 231
Transition path 108, 109
Transparency 229
U
UI technologies 302
Universal Worklist (UWL) 296, 302, 307
Upper level management report 189

V
Valuation factor 194
Value creation 23
Volume indicators 129

W
Web Dynpro 302
Weighting factor 192
Workflow automation 295
WS-HumanTask 306
Wyeth Pharmaceuticals 339

Y
YASU Technologies 303

Z
Zachman framework 55