
Migrating a MySQL
Database to Adaptive
Server Anywhere 9

A whitepaper from iAnywhere Solutions, Inc.,
a subsidiary of Sybase, Inc.

Contents
Introduction 2

Differences between MySQL and Adaptive Server Anywhere 3
Data types . 3
MySQL function mappings to Adaptive Server Anywhere 6
Syntax mappings . 10
Other migration issues . 13

Migrating a MySQL database to an Adaptive Server Anywhere database 15
Creating an Adaptive Server Anywhere database 15
Creating a data source for the MySQL database 16
Migrating the MySQL database to Adaptive Server Anywhere 16
Tweaking the new Adaptive Server Anywhere database 20

Migrating applications from MySQL to Adaptive Server Anywhere 22
Migrating a Perl application from MySQL to Adaptive Server Anywhere . . 22
Migrating a PHP application from MySQL to Adaptive Server Anywhere . 23

Legal Notice 26
Contact Us . 26

1

Copyright © 2004 iAnywhere Solutions, Inc.

Introduction
Migrating data from MySQL to Adaptive Server Anywhere can be a
straightforward process if there are not a lot of MySQL extensions in use within
your database and application. Adaptive Server Anywhere simplifies migration by
including built-in tools that facilitate a smooth transition from MySQL (and other
RDBMS’s) to Adaptive Server Anywhere.

The first part of this document discusses in detail differences between Adaptive
Server Anywhere and MySQL, including data type differences, feature
differences, and syntax differences. Some of the features are unique to MySQL
and can hinder migration. Approaches for how you might choose to deal with
these issues are provided. The second part of this document includes a
systematic explanation of how to migrate data from a MySQL database into an
Adaptive Server Anywhere database using the Sybase Central Data Migration
wizard. Finally, part three of the document supplies an example of how you might
migrate an existing application running against MySQL to one that runs against
Adaptive Server Anywhere.

Software version
This paper was written for SQL Anywhere Studio version 9.0.1 and later, and
MySQL version 4.0 and later.

2

Copyright © 2004 iAnywhere Solutions, Inc.

Differences between MySQL and Adaptive
Server Anywhere

The following sections describe some of the differences between MySQL and
Adaptive Server Anywhere that you may encounter during migration, along with
some suggested solutions that can be used as starting points to resolve any
issues that arise during migration. There are many ways to optimize your code
with Adaptive Server Anywhere features that are missing from MySQL. Here are a
few examples:

♦ Using subqueries can help simplify your code and limit the use of temporary
tables. MySQL 4.1 supports subqueries, but only in a rudimentary form.

♦ Row-level locking avoids the need to lock entire tables for update and can
reduce contention when you have multiple users accessing the database.

♦ Foreign key support is native in Adaptive Server Anywhere, allowing you to let
the server perform joins instead of implementing them in your application code
(when using MyIsam tables), as well as performing cascading operations.

♦ Stored procedures and triggers can greatly simplify your application code and
enable you to keep your business logic independent of your application log.
MySQL has only added stored procedure support in version 5, which is not yet
in Alpha at the time of writing.

♦ Using views can make your database schema and rights management much
easier and more efficient.

It is highly recommended that you review the Adaptive Server Anywhere
documentation, as well as the developer resources, including samples and
technical documents, available on the iAnywhere Solutions website at
www.ianywhere.com/developer when moving to SQL Anywhere Studio.

Data types

In most cases, the MySQL data types can map directly to Adaptive Server
Anywhere data types. The following table lists some examples:

MySQL data type Equivalent Adaptive Server

Anywhere data type

Notes

smallint unsigned UNSIGNED SMALLINT

smallint TINYINT

bool/boolean TINYINT or BIT

double(m, n) DOUBLE(n) The ‘m’ argument in MySQL is re-
lated to data formatting. See note
below.

3

www.ianywhere.com/developer

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL data type Equivalent Adaptive Server

Anywhere data type

Notes

float(m,n) unsigned FLOAT(n) The ‘m’ argument in MySQL is re-
lated to data formatting. See note
below.

fixed DECIMAL

varchar(32) binary BINARY(32)

national char/varchar CHAR/VARCHAR

tiny/medium/long
text

CHAR/VARCHAR/LONG
VARCHAR

Adaptive Server Anywhere stores
only what is required to hold the text
values, so the extra requirement of
specifying BLOB size via different
BLOB types is not required.

tinyblob BINARY(255)

blob/mediumblob/
longblob

LONG BINARY Adaptive Server Anywhere stores
only what is required to hold the
BLOB value, so the extra requirement
of specifying BLOB size via different
BLOB types is not required

year DATE

Note: In addition to the differences in the data types themselves, there is also a
difference in the declaration of data types. MySQL provides an optional parameter
for its numeric types that allows you to specify the display width of integer values
(for example, an int(4) column would return the value ‘1’ as ‘<s><s><s><s>1’
where <s> is a space). The optional ‘ZEROFILL’ modifier on the type definition
would replace the spaces in the previous example with 0’s (for example, ‘1’ is
returned as ‘0001’). The merge of display format and data values in the type
definition is not supported by Adaptive Server Anywhere. The cast and convert
functions along with the various string manipulation functions are available to
format data values when they are retrieved from the database.

The following data types differ from Adaptive Server Anywhere more substantially
than by syntax:

MEDIUMINT MEDIUMINTs are 3-byte integer values. They can easily be
simulated using an integer (4 bytes) in Adaptive Server Anywhere, or a smallint (2
bytes), depending on the expected range of values for the column.

Year Year is a 2 or 4 digit year value. The Adaptive Server Anywhere DATE
datatype can be used to hold year values , but will use slightly more storage
space. Date arithmetic and conversions can be performed using the Adaptive
Server Anywhere built-in functions listed in the documentation under “Date and
Time Functions” in the Adaptive Server Anywhere SQL Reference.

The following data types do not match exactly, and will require some work to

4

Copyright © 2004 iAnywhere Solutions, Inc.

migrate them into Adaptive Server Anywhere:

NCHAR / NVARCHAR Prior to MySQL version 4.1, NCHAR is the same as
CHAR, and Adaptive Server Anywhere can support this type with no changes
required. However, as of MySQL version 4.1, an NCHAR value is stored in
MySQL using the UTF8 character set. Adaptive Server Anywhere supports a
variety of character sets, including UTF8. With a database created using the
proper collation, the use of a special data type to store international values is not
required. To learn more about the latest international character set support in
Adaptive Server Anywhere, see the chapter “International Languages and
Character Sets” in the Adaptive Server Anywhere Database Administration Guide.

ENUM An ENUM value is a string object whose value must be chosen from a
list of supplied values enumerated in the column definition when a table is
created. The enumerated values can also be inserted/retrieved by their index
position in the ENUM definition. The index value 0 is reserved for the empty
string. The ENUM datatype is represented in Adaptive Server Anywhere by a
TINYINT column. To accomplish the same behavior as MySQL ENUM, there are
a few options, but changes to the client application will almost certainly be
required. Some options you have are:

♦ altering the client side application to remove the need for the ENUM values

♦ translating the ENUM values on the client side

♦ adding some logic to the server side to attempt to mimic the MySQL behavior
of ENUM values by using stored procedures, triggers, computed columns,
views and/or a mapping table for the ENUM types

For example, a view could be created on the table containing the enum fields to
allow for the return of the values as a string, while a regular SELECT could be
used to return them as a number. Here is an example of a view that could be
used:

CREATE TABLE enumtbl(pkey INTEGER NOT NULL PRIMARY KEY, enumval TINYINT);

CREATE VIEW v_enumtable AS
SELECT pkey,

CASE enumval
WHEN 0 THEN ’’
WHEN 1 THEN ’val1’
WHEN 2 THEN ’val2’
WHEN 3 THEN ’val3’

ELSE NULL
END

FROM enumtbl;

Then a query may look something like this:

SELECT pkey, enumval FROM v_enumtable;

Alternatively, a mapping table could be created for the ENUM values and
whenever you retrieve data from enumtbl, a join can be made to the mapping
table containing the ENUM strings.

CREATE TABLE enummap(enumval TINYINT NOT NULL PRIMARY KEY, enumstr CHAR(16));

5

Copyright © 2004 iAnywhere Solutions, Inc.

Then a query may look something like this:

SELECT pkey, enumstr FROM enumtbl, enummap
WHERE enumtbl.enumval = enummap.enumval;

An insert on the table can be done directly if you are using the index values of the
ENUM; otherwise, a stored procedure could be used to insert a row into any table
containing an ENUM. The stored procedure would contain the logic to decode the
ENUM values. Following is a sample stored procedure implementation to deal
with an ENUM column equivalent in Adaptive Server Anywhere (using the same
table definition as above):

CREATE PROCEDURE sp_insert_enumval(IN pkeyval int, IN enum CHAR(16))
BEGIN

DECLARE enum_map TINYINT;

IF enum IS NOT NULL THEN
CASE enum

WHEN ’’ THEN SET enum_map = 0
WHEN ’val1’ THEN SET enum_map = 1
WHEN ’val2’ THEN SET enum_map = 2
WHEN ’val3’ THEN SET enum_map = 3

ELSE SET enum_map = 0
END CASE

END IF;

INSERT INTO enumtbl VALUES(pkeyval, enum_map);
END

SET A SET value is a string object whose value must be chosen from a list of
values supplied when the column is defined. It is different from the ENUM type in
that 0 or more values from the list may be combined to create a valid value for the
column. Each value in the set is assigned a binary value and data can be
assigned or retrieved by using a number representing the combination of values
to be set (for example, specifying a value of 9 would insert the first and the fourth
value from the set into the column). Depending on how many values are in the set
(64 is the maximum), anything from a tinyint to a bigint is required to map a SET
value from MySQL to Adaptive Server Anywhere. To achieve the same behavior
as MySQL, methods similar to those demonstrated above with the ENUM data
type can be used.

MySQL function mappings to Adaptive Server Anywhere

Many of the functions in both MySQL and Adaptive Server Anywhere have the
same name. Most MySQL functions that have different names have an equivalent
Adaptive Server Anywhere version. MySQL contains a few built-in functions that
do not exist in Adaptive Server Anywhere. Most of these functions can be created
in Adaptive Server Anywhere as user-defined functions that perform the same
activity. If you give these functions the same name in the Adaptive Server
Anywhere database, you will not need to modify the existing client application’s
SQL statements. Here are a some examples of how Adaptive Server Anywhere
user-defined functions can supply the same functionality as their MySQL built-in
counterparts:

6

Copyright © 2004 iAnywhere Solutions, Inc.

CREATE FUNCTION FROM_UNIXTIME(IN fromdt bigint default 0,
IN fmt varchar(32) default ’Mmm dd, yyyy hh:mm:ss’)

RETURNS datetime
BEGIN

RETURN(dateformat(dateadd(second, fromdt, ’1970/01/01 00:00:00’), fmt))
END;

CREATE FUNCTION SEC_TO_TIME(IN sec bigint default 0)
RETURNS time
BEGIN

return(dateadd(second, sec, ’1970/01/01 00:00:00’))
END;

The following sections detail many of the MySQL functions along with their
Adaptive Server Anywhere equivalents. The list is extensive, but not exhaustive,
as the list of functions in both Adaptive Server Anywhere and MySQL changes
with each release.

String functions

MySQL function Adaptive Server Any-

where function

Notes

IFNULL(a, b) IFNULL(a, b, a) or

ISNULL(a, b)

The Adaptive Server Anywhere
IFNULL function behaves slightly
differently from the MySQL version.

IF(cond, a, b) IF cond THEN a ELSE
b

END IF

Adaptive Server Anywhere supports
the IF statement in both procedural
logic, as well as embedded, as an
expression in a select list.

CONCAT(a, b, ...) STRING(a, b, ...) In MySQL, if any of a, b, ... is NULL,
the return value is NULL, while in
Adaptive Server Anywhere, if any
of a, b, ... is NULL, it is treated as
an empty string for the purposes of
concatenation.

CONCAT_WS(sep, str1,
str2, ...)

STRING(str1, sep,
str2, sep, ...)

See comment for Concat () function
above.

CONV(N, frombase,
tobase)

INTOHEX(N), HEX-
TOINT(N)

Adaptive Server Anywhere only pro-
vides functions that allow you to
convert to and from hexadecimal.
Other conversions would have to be
manually implemented using a UDF.

HEX(arg) INTOHEX(srg) if arg
is numeric, HEXTOINT(
arg) if arg is string

CHAR(N,...) CHAR(N) The Adaptive Server Anywhere
CHAR() function only supports one
argument.

7

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL function Adaptive Server Any-

where function

Notes

STRCMP(expr1, expr2) COMPARE(expr1,
expr2)

LENGTH(str) BYTE_LENGTH(str) The Adaptive Server Anywhere
LENGTH() function returns the num-
ber of characters in str, not necessar-
ily the byte length.

OCTET_LENGTH(str) BYTE_LENGTH(str)

CHARACTER_-
LENGTH(str)

CHAR_LENGTH(str)

BIT_LENGTH(str) BYTE_LENGTH(str) *
8

LOCATE(substr, str[,
pos])

LOCATE(str, sub-
str[,pos])

The order of the arguments differs in
Adaptive Server Anywhere.

POSITION(substr IN str
)

LOCATE(str, substr)

INSTR(str, substr) LOCATE(str, substr)

SUBSTRING(str FROM
pos[FOR len])

SUBSTRING(str, pos[,
len])

MID(str, pos, len) SUBSTRING(str, pos,
len)

TRIM(str) TRIM(str) Adaptive Server Anywhere does not
support the other forms of the MySQL
TRIM function.

INSERT(str, pos, len,
newstr)

STUFF(str, pos, len,
newstr)

ELT(N, str1, str2, ...) ARGN(N, str1, str2, ...
)

CONVERT(expr USING
trans_name)

CSCONVERT(expr,
trans_name)

trans_name may differ for equivalent
character sets in Adaptive Server
Anywhere and MySQL. See the doc-
umentation for details.

Numeric functions

MySQL function Adaptive Server Anywhere

function

Notes

CEIL(x) CEILING(x)

ROUND(x) ROUND(x, 0)

8

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL function Adaptive Server Anywhere

function

Notes

x DIV y FLOOR(x/y)

LN(x) LOG(x)

LOG(x, y) LOG(x) / LOG(b)

LOG2(x) LOG(x) / LOG(2)

POW(x, y) POWER(x, y)

ATAN(x, y) ATAN2(x, y)

Date and time functions

MySQL function Adaptive Server Anywhere

function

Notes

TIME(expr) CAST(expr as TIME) The CONVERT function
could also be used.

TIMESTAMP(expr) DATETIME(expr)

DAYOFWEEK(expr) DOW(expr)

WEEKDAY(expr) MOD(DOW(expr) - 1, 7)

DAYOFMONTH(expr) DAY(expr)

WEEKOFYEAR(expr) DATEPART(week, expr)

PERIODADD(expr, N) DATEFORMAT(DATEADD(
month, 2, expr || ‘/01’),
‘YYYYMM’)

PERIOD_DIFF(P1, P2) DATEDIFF(month, P2||’/01’,
P1||’/01’)

ADDDATE(date, numdays) DATEADD(day, numdays,
date)

SUBDATE(date, numdays) DATEADD(day, -numdays,
date)

EXTRACT(type FROM date
)

DATEPART(type, date) The ‘type’ argument differs
between Adaptive Server
Anywhere and MySQL and
will have to be adjusted
accordingly.

TO_DAYS(date) DAYS(date) - 58 Adaptive Server Anywhere
measures differences in
dates from ‘0000/02/29’ in-
stead of ‘0000/01/01’.

9

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL function Adaptive Server Anywhere

function

Notes

MAKEDATE(year, day-
ofyear)

YMD(year, 0, dayofyear)

UNIX_TIMESTAMP(date) DATEDIFF(second,
‘1979/01/01’, date)

Syntax mappings

Most of the syntax features of MySQL are available in Adaptive Server Anywhere,
but occasionally the syntax for accessing those features is different. The following
chart details many of these statements along with their Adaptive Server Anywhere
equivalents.

☞ For specific examples of the Adaptive Server Anywhere syntax listed below,
see “SQL Statements” in Adaptive Server Anywhere SQL Reference.

Operators

MySQL has several operators used to compare two or more arbitrary expressions
and evaluate boolean expressions. The following is a list of those expressions,
along with the Adaptive Server Anywhere equivalent if applicable.

MySQL operator Adaptive Server Any-

where operator

Notes

!= <>

<=> (expr1 = expr2 OR ((
expr1 IS NULL) AND (
expr2 IS NULL)))

The <=> operator represents equality, in-
cluding NULL values (NULL=NULL is true).

ISNULL(expr) IS NULL expr

INTERVAL(N,
N1, N2, ...)

none built in A user defined function could easily be used
to achieve the same function. For example: if
(N < N1) then 0 elseif(N < N2) then 1 elseif
...

! NOT

&& AND

|| OR

a XOR b ((a AND (NOT b)) OR
((NOT a) AND b))

The Adaptive Server Anywhere expression
is complex for large numbers of XOR argu-
ments, so an alternative method is recom-
mended (dependant on the specific applica-
tion scenario) to migrate these expressions.

10

Copyright © 2004 iAnywhere Solutions, Inc.

Data Manipulation Language

MySQL statement Adaptive Server Any-

where equivalent

Notes

INSERT ...

ON DUPLICATE KEY UP-
DATE

INSERT ...

ON EXISTING UP-
DATE

Adaptive Server Anywhere also
offers the options ERROR and
SKIP for existing rows.

SELECT ... INTO OUTFILE UNLOAD SELECT ...

DBISQL OUTPUT TO

SELECT/UPDATE/DELETE
... LIMIT

FIRST or TOP n

DEFAULT ‘0’ NOT NULL
auto_increment

NOT NULL DEFAULT

AUTOINCREMENT

NOT NULL auto_increment NOT NULL DEFAULT

AUTOINCREMENT

LIMIT offset, numRows TOP numRows START
AT offset

Insert IGNORE INSERT ...

ON EXISTING SKIP

Replace ... INSERT ...

ON EXISTING UP-
DATE

FROM_DAYS() DAYS()

TO_DAYS() DATEADD(day, ...)

WEEKDAY() DOW()

GROUP_CONCAT LIST

STD STDDEV

CHARACTER_LENGTH LENGTH() function

Position() LOCATE() function

LOCALTIME, LOCALTIMES-
TAMP

NOW() built in function

DECODE CASE statement

INSERT INTO . . . DEFAULT
VALUES.

INSERT INTO . . . VAL-
UES(DEFAULT)

LOAD DATA INFILE LOAD TABLE

11

Copyright © 2004 iAnywhere Solutions, Inc.

Miscellaneous syntax

The following is a miscellaneous list of compatibility items that do not fit into the
aforementioned categories. It also includes mappings between functions that are
not exactly the same, but are designed to provide the same functionality.

MySQL syntax Adaptive Server Anywhere

syntax

Notes

VERSION() @@version global variable

mysql_insert_id() @@identity global variable

LAST_INSERT_ID variable @@identity global variable

mysql_affected_rows() @@rowcount global vari-
able

ANALYZE TABLE sa_table_page_usage, sa_-
table_fragmentation

Adaptive Server Anywhere
also offers access to other
properties via the property()
function.

OPTIMIZE TABLE CREATE STATISTICS Adaptive Server Anywhere
has a self-tuning optimizer
that automatically maintains
statistics, so statistics do
not need to be updated
manually.

CHECK TABLE sa_validate() procedure

USE database-name There is no equivalent in
Adaptive Server Anywhere.
Each database running on
a server requires its own
connection.

LOCK TABLES (name)
WRITE

LOCK TABLE table-name IN
EXCLUSIVE MODE

Adaptive Server Anywhere
supports row-level locking,
so table locks are generally
not required.

UNLOCK TABLES COMMIT A COMMIT releases all
locks, unless a cursor is
opened using the WITH
HOLD clause.

Create table(KEY...) CREATE TABLE ...

CREATE INDEX

Adaptive Server Anywhere
requires two statements.

DO CALL

12

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL syntax Adaptive Server Anywhere

syntax

Notes

FLUSH/RESET sa_flush_cache

sa_flush_statistics

Most of the other flush-
able elements in MySQL
are automatically managed
by Adaptive Server Any-
where and do not need to be
flushed.

expr1 SOUNDS LIKE expr2 SOUNDEX(expr1) =
SOUNDEX(expr2)

REGEX/RLIKE SIMILAR SIMILAR works differently
from the mysql REGEX syn-
tax, but performs the same
function. It may suit the
needs where the MySQL
REGEXP expression is be-
ing used.

BINARY str CAST str AS BINARY

CURDATE() | CURRENT_-
DATE()

CURRENT DATE

CURTIME() | CURRENT_-
TIME()

CURRENT TIME

SYSDATE() | LOCALTIME()
| CURRENT_TIMESTAMP()

CURRENT TIMESTAMP

UTC_DATE() CURRENT UTC TIMES-
TAMP

DATABASE() CURRENT DATABASE

LOAD_FILE(file) xp_read_file(file) In Adaptive Server Any-
where, the contents of file
are returned as a long binary
field, while in MySQL they
are returned as a string.

CONNECTION_ID() CONNECTION_-
PROPERTY(‘Number’)

Other migration issues

The following is a list of miscellaneous notes to keep in mind while migrating from
MySQL to Adaptive Server Anywhere.

♦ The identifiers in MySQL are optionally enclosed with the back quote (‘), while
Adaptive Server Anywhere uses the double quote (") or alternatively, square
brackets ([]).

13

Copyright © 2004 iAnywhere Solutions, Inc.

♦ Some words are keywords in Adaptive Server Anywhere and not in MySQL,
such as comment and session . These keywords must be enclosed in double
quotes in order to be used with Adaptive Server Anywhere. Alternatively, you
can use the Adaptive Server Anywhere NON_KEYWORDS option to change
the list of recognized keywords.

☞ For information about the NON_KEYWORDS option, see
“NON_KEYWORDS option [compatibility]” in Adaptive Server Anywhere
Database Administration Guide.

♦ The minimum timestamp value in Adaptive Server Anywhere is ‘0001-01-01
00:00:00’, while it is ‘0000-00-00 00:00:00’ in MySQL.

♦ Timestamps in MySQL have the format of YYYY -MM-DD hh:mm:ss. Adaptive
Server Anywhere includes fractions of a second as part of the timestamp
value. The TIMESTAMP_FORMAT option allows you to specify the exact
format used to return datetime values.

☞ For information about the TIMESTAMP_FORMAT option, see
“TIMESTAMP_FORMAT option [compatibility]” in Adaptive Server Anywhere
Database Administration Guide.

♦ While MySQL allows the use of single or double quotes around string literals,
by default single quotes must be used to enclose string values in Adaptive
Server Anywhere. As previously mentioned, by default, double quotes signify
the use of a database object identifier. This behavior can be changed by
setting the QUOTED_IDENTIFIER option in the database.

☞ For information about the QUOTED_IDENTIFIER option, see
“QUOTED_IDENTIFIER option [compatibility]” in Adaptive Server Anywhere
Database Administration Guide.

14

Copyright © 2004 iAnywhere Solutions, Inc.

Migrating a MySQL database to an Adaptive
Server Anywhere database

Migrating data from MySQL to Adaptive Server Anywhere is a straightforward
process, with minor issues occurring only if you are using the MySQL-specific
data types mentioned previously. Data migration can be accomplished using the
Data Migration wizard that is a part of Sybase Central. Alternatively, a more
customized migration can be done using the sa_migrate set of stored procedures
in Adaptive Server Anywhere. The mysqldump utility, coupled with the Adaptive
Server Anywhere LOAD TABLE statement, could also be used to migrate the
data. Note that if the MySQL SET or ENUM data types are used in the MySQL
database, you may have some additional considerations when migrating your
MySQL database to Adaptive Server Anywhere.

☞ For information about these data types and differences from Adaptive Server
Anywhere, see “Data types” on page 3.

Requirements

♦ This document assumes you have a MySQL database running on any of the
supported platforms and Adaptive Server Anywhere 9.0.1 installed on any of
the supported Windows platforms.

♦ If you have not created a MySQL database, you can create a few tables in the
MySQL test database to walk through the migration steps.

♦ The MySQL ODBC 3.5.1 (or later) driver must also be installed on the machine
running the Adaptive Server Anywhere database.

Creating an Adaptive Server Anywhere database

You must first create an Adaptive Server Anywhere database to migrate the
MySQL database to. The following steps explain how to create a new database
using Sybase Central.

1. Start Sybase Central. From the Start menu, choose Programs ➤ SQL
Anywhere 9 ➤ Sybase Central.

2. Create a new Adaptive Server Anywhere 9 database.
♦ In the left pane of Sybase Central, select Adaptive Server Anywhere 9.

♦ In the right pane, click the Utilities tab.

♦ Double-click Create Database.
The Create Database wizard appears.

♦ Follow the instructions in the wizard to create a new database.

15

Copyright © 2004 iAnywhere Solutions, Inc.

Creating a data source for the MySQL database

The migration process requires an ODBC connection to the source database.
Therefore, you need to create an ODBC data source (DSN) for the MySQL
database.

1. Download and install the MySQL ODBC 3.51 driver if you have not already
done so.

The most recent driver is located at
http://www.mysql.com/downloads/api-myodbc.html.

2. Start Sybase Central. From the Start menu, choose Programs ➤ SQL
Anywhere 9 ➤ Sybase Central.

3. In the left pane of Sybase Central, select Adaptive Server Anywhere 9 and
then click the Utilities tab in the right pane.

4. Double-click Open ODBC Administrator.

The ODBC Data Source Administrator dialog appears.

5. Click Add.

The Create New Data Source wizard appears.

6. Select the MySQL ODBC 3.51 Driver from the list of available drivers and then
click Finish.

The MySQL ODBC 3.51 Driver - DSN Configuration dialog appears.

7. Type a name for the data source in the Data Source Name field. For example,
name the data source MySQL migrate .

8. Type the appropriate values in any other fields required for your MySQL
database.

9. Click the Test Data Source button to ensure you have configured the data
source correctly.

10. Click OK.

Migrating the MySQL database to Adaptive Server Anywhere

In order to migrate to the new Adaptive Server Anywhere database, you must first
connect to the Adaptive Server Anywhere database. The following instructions
explain how to connect using the database file location.

❖ To connect to the Adaptive Server Anywhere database

1. In the left pane of Sybase Central, select Adaptive Server Anywhere 9 and
then from the File menu, choose Connect.

The Connect dialog appears.

16

http://www.mysql.com/downloads/api-myodbc.html

Copyright © 2004 iAnywhere Solutions, Inc.

2. On the Identification tab, type a valid User ID and password for your database.
By default, all Adaptive Server Anywhere databases contain a DBA user ID
with the password SQL.

3. On the Database tab, click the Browse button and select the Adaptive Server
Anywhere database file you created.

4. Click OK.

The Adaptive Server Anywhere database server starts automatically.

The next step is to tell Sybase Central where to find the MySQL database. This is
done by creating a remote server.

❖ To create a remote server

1. In the left pane of Sybase Central, expand your database server and database
icons. In the example below, the database migrate is running on a database
server that is also named migrate .

2. In Sybase Central, select the Remote Servers folder in the left pane.

3. From the File menu, choose New ➤ Remote Server.

The Remote Server Creation wizard appears.

4. Follow the instructions in the wizard to create a remote server that connects to
your MySQL database.

17

Copyright © 2004 iAnywhere Solutions, Inc.

♦ On the first page of the wizard, type a name for the remote server, for
example, MySQL migrate , and then click Next.

♦ Choose Generic as the type of remote server. Click Next.

♦ Select the Open Database Connectivity (ODBC) option and type the name of
the ODBC data source for your MySQL database in the connection
information field. For example, if you named your ODBC data source MySQL
migrate when you created it, type MySQL migrate in the connection
information field.

5. Click Finish.

The new remote server appears in Sybase Central.

If the remote server does not define a user that is the same as the user ID you are
connected to the Adaptive Server Anywhere database with, you must create an
external login for your current user. For example, if you connected to the Adaptive
Server Anywhere database with user ID DBA , and your MySQL database does
not contain a user ID DBA, then you must create an external login.

❖ To create an external login

1. In the left pane of Sybase Central, open the Remote Servers folder and then
select your remote server.

2. In the right pane, click the External Logins tab.

3. From the File menu, choose New ➤ External Login.

The External Login Creation wizard appears.

4. Select the user you are currently connected as from the list of users.

5. Type the name of a user in the MySQL database in the Login Name field. Type
the password for this user in the Password and Confirm Password fields. Click
Finish.

Now you are ready to migrate your MySQL database: Adaptive Server Anywhere
is running, connected, and able to communicate to the MySQL database via
ODBC. The next step is to use the Migration Wizard to perform the migration.

❖ To migrate the MySQL database

1. In the left pane of Sybase Central, select your Adaptive Server Anywhere
database.

2. From the File menu, choose Migrate Database.

The Database Migration wizard appears.

3. Click Next on the introductory page.

4. Select the current database and then click Next.

5. Select the MySQL remote server you created, for example, MySQL migrate ,
and then click Next.

18

Copyright © 2004 iAnywhere Solutions, Inc.

6. Click the Select All button and then click Next to migrate all the MySQL tables
to the Adaptive Server Anywhere database.

7. Select the Adaptive Server Anywhere database user you wish to own the
tables. Click Next.

8. Select the options you wish to migrate. Because of limitations of the MySQL
ODBC driver, foreign keys cannot be migrated. Clear the Migrate the Foreign
Keys option to avoid errors later.

9. Click Finish to start the migration.

The Migrating Database window appears. You can close this window when the
status changes to Completed .

19

Copyright © 2004 iAnywhere Solutions, Inc.

Tweaking the new Adaptive Server Anywhere database

Now that you have migrated the MySQL schema and data to the Adaptive Server
Anywhere database, you can start enjoying the benefits Adaptive Server
Anywhere brings. One immediate benefit is transactional support.

Here are a few easy tweaks that will make your existing schema even better.

Since not all MySQL tables support referential integrity, your MySQL schema may
not have foreign keys. Even for InnoDB users, the MySQL ODBC driver does not
support inspecting foreign key relationships; therefore the new Adaptive Server
Anywhere database will not contain any foreign keys.

❖ To add referential integrity support

1. List the foreign keys in the MySQL database by issuing the following SQL
statement against the MySQL database:

SHOW TABLE STATUS FROMdatabase_name

Alternatively, SHOW CREATE TABLEtable_name will also reveal any foreign key
relationships.

The referential constraints are listed under the comment column for each table
in the form:

(column_name) REFER ref_db_name / ref_table_name (ref_column_name)

2. Specify referential integrity constraints:
♦ You can use Sybase Central to add the foreign keys to your database

♦ Alternatively, for each of the foreign keys, issue the following SQL statement
against the Adaptive Server Anywhere database (using the Interactive SQL
utility (dbisql)):

ALTER TABLE "table_name "
ADD FOREIGN KEY "foreign_key_name " (" column_name ")
REFERENCES "ref_table_name " (" ref_column_name ");

With the new foreign key constraints in place, the Adaptive Server Anywhere
database will check for referential integrity automatically and greatly improve
data integrity.

Properly placed indexes improve database performance significantly, while poorly
placed ones hinder performance with equal significance. SQL Anywhere Studio 9
introduced the Index Consultant that inspects database usage and workload and
recommends changes to the indexing structure as needed. MySQL dictates that
foreign key columns must have indexes explicitly defined, but this is not the case
with Adaptive Server Anywhere. Also, for each primary key, MySQL creates a
primary index that is redundant in Adaptive Server Anywhere. The Index
Consultant will likely recommend removing the redundant indexes that are copied
from the MySQL database during the migration process. The Index Consultant
can prove to be a useful tool to boost the performance of the migrated Adaptive
Server Anywhere database even further after migration has been completed.

20

Copyright © 2004 iAnywhere Solutions, Inc.

☞ For information about optimizing your schema, refer to your SQL Anywhere
Studio documentation and the iAnywhere developer resources available online at
www.ianywhere.com/developer .

21

www.ianywhere.com/developer

Copyright © 2004 iAnywhere Solutions, Inc.

Migrating applications from MySQL to
Adaptive Server Anywhere

Application migration from MySQL to Adaptive Server Anywhere depends on the
interface used to access your MySQL application. The following are some of the
more popular interfaces that should require only minimal work to migrate:

♦ ODBC Both Adaptive Server Anywhere and MySQL support the ODBC 3.51
API specification. Generally, migration of these applications will involve
changing the ODBC data source to point to Adaptive Server Anywhere instead
of MySQL. There may be some specific differences in terms of the
implementation of certain API functions, but given the maturity of the ODBC
specification, these should be minor.

♦ JDBC MySQL has a type 4 JDBC driver (100% Java implementation). To
migrate to the Adaptive Server Anywhere equivalent, the Sybase jConnect
driver should be used. However, to achieve the maximum performance benefits
of Adaptive Server Anywhere, it is recommended that you use the iAnywhere
JDBC driver. The iAnywhere JDBC driver is a type 2 JDBC driver. The
Adaptive Server Anywhere JDBC drivers support all of the core elements of the
JDBC 2.0 specification and some of the optional ones.

♦ Perl For information about migrating Perl applications, see “Migrating a Perl
application from MySQL to Adaptive Server Anywhere” on page 22.

♦ PHP For information about migrating PHP applications, see “Migrating a
PHP application from MySQL to Adaptive Server Anywhere” on page 23.

Applications written using the other interfaces supported by MySQL will require
more work to migrate as there is no support for these drivers in Adaptive Server
Anywhere. This includes the MySQL C/C++ API and the Python, Tcl, and Eiffel
access drivers. In some cases, a third-party driver may be found that allows you
to bridge to ODBC or natively access Adaptive Server Anywhere.

Migrating a Perl application from MySQL to Adaptive Server
Anywhere

Migration of Perl applications from MySQL to Adaptive Server Anywhere is very
simple. You have the option of using ODBC to connect using the DBD::ODBC
driver or using the native Adaptive Server Anywhere driver (called DBD::ASAny)
that ships with Adaptive Server Anywhere.

If you are already using the DBD::ODBC driver, application migration is simply a
matter of changing your connection string to refer to Adaptive Server Anywhere.
Once that is complete, there may be some minor tweaks required to deal with the
differences between Adaptive Server Anywhere and MySQL as discussed in
previous sections of this paper, but minimal work is required to complete the
migration.

22

Copyright © 2004 iAnywhere Solutions, Inc.

Some MySQL-specific methods can be migrated to Adaptive Server Anywhere
equivalents by using queries or standard DBD functionality. For example:

MySQL Adaptive Server Anywhere Comment

mysql_insertid SELECT @@identity

is_blob, is_num, is_not_null,
length, name, table, type

NAME, TYPE, SCALE,
PRECISION, NULLABLE

All of these property items
are DBI standard elements

is_key, is_pri_key SELECT . . . FROM syscol-
umn WHERE ...

Detection of indexes/keys
can be done by looking
at the table and column
definitions in the system
tables

Migrating a PHP application from MySQL to Adaptive Server
Anywhere

Migrating a PHP application from MySQL to Adaptive Server Anywhere is simple.
You have the option of using ODBC to connect to Adaptive Server Anywhere or
using an Adaptive Server Anywhere-PHP module provided by iAnywhere
Solutions (available for download from the iAnywhere Developer website at
www.ianywhere.com/developer).

Windows users may prefer to migrate to the ODBC API. Setting up a DSN in
Windows for use with ODBC is simple. In addition, the Windows binary for PHP
already has built-in ODBC support.

Linux users, on the other hand, may find the PHP module more convenient to set
up. Adaptive Server Anywhere support can be compiled into PHP using the -with

sqlanywhere[= path_to_asa] flag when calling the configure script. Details
about the module can be found at http://www.sybase.com/detail?id=1019698.

If the PHP application is already using ODBC to connect to the MySQL database,
then there is no need to change the function calls. You can skip the section below
and go directly to “PHP migration notes” on page 25.

Function mapping

The MySQL, ODBC, and Adaptive Server Anywhere APIs are very similar. It is
often possible to map one function directly to another. Sometimes, when a
function has no equivalent counterpart, you must be creative and come up with
alternative code that achieves the same result. In certain cases, you may be
better off rewriting small portions of the code to take advantage of advanced
features provided by Adaptive Server Anywhere. For example, with transaction
support, the application can efficiently maintain atomicticity and easily ensure
data integrity.

The following table lists some commonly used MySQL functions and their ODBC
and Adaptive Server Anywhere equivalents.

23

www.ianywhere.com/developer
http://www.sybase.com/detail?id=1019698

Copyright © 2004 iAnywhere Solutions, Inc.

MySQL Adaptive Server Anywhere

(ODBC)

Adaptive Server Anywhere

(PHP module)

mysql_close odbc_close sqlanywhere_disconnect

mysql_connect odbc_connect sqlanywhere_connect

mysql_errno odbc_error See “mysql_errno” on
page 24

mysql_error odbc_errormsg None

mysql_escape_string See “mysql_escape_string”
on page 24

See “mysql_escape_string”
on page 24

mysql_fetch_row odbc_fetch_row sqlanywhere_fetch_row

mysql_insert_id See “mysql_insert_id” on
page 24

See “mysql_insert_id” on
page 24

mysql_num_fields odbc_num_fields sqlanywhere_num_fields

mysql_num_rows odbc_num_rows sqlanywhere_num_rows

mysql_query odbc_exec sqlanywhere_query

mysql_select_db None None

mysql_connect

Connecting via ODBC is straight forward. The odbc_connect function takes, at a
minimum, the DSN, user name, and password.

Connecting via the PHP module requires an Adaptive Server Anywhere
connection string. Usually this can be done by the following function call:

sqlanywhere_connect("uid=DBA;pwd=SQL;eng= eng_name")

mysql_errno

This function returns the error number of the previous query. The same result can
be obtained by issuing the following SQL statement:

SELECT @@error

mysql_escape_string

Neither ODBC nor the PHP module provides a way to escape a SQL string.
However, this can be easily done by replacing each single quote with two single
quotes.

mysql_insert_id

This function returns the last inserted ID of an autoincrement column. The same
result can be obtained by issuing the following SQL statement:

SELECT @@identity

24

Copyright © 2004 iAnywhere Solutions, Inc.

As you can see, many MySQL functions translate directly into ODBC and
Adaptive Server Anywhere calls. For the remaining functions, simple alternatives
can be found. As with any migration job, there are, unfortunately, differences
between MySQL and Adaptive Server Anywhere that require more attention.
These points are discussed in the following section.

PHP migration notes

There are subtle differences in the way SQL strings are treated by the various
database vendors. For example, timestamps in MySQL have the format
YYYY -MM-DD hh :mm :ss , while Adaptive Server Anywhere supports
timestamps with fractions of a second. The strtotime function in PHP fails to
recognize Adaptive Server Anywhere timestamps. Extra work must be done to
remove the fractional second portion of the Adaptive Server Anywhere timestamp.

Adaptive Server Anywhere via ODBC also provides support for transactions and
prepared statements. The odbc_commit and odbc_rollback functions terminate a
transaction as you would expect. One point to notice is that PHP defaults to
autocommit, meaning every statement is committed as soon as it is successfully
executed. The odbc_autocommit function is used to set the autocommit behavior
to enable the use of larger transactions. Prepared statements are useful if the
same queries, possibly with different parameters, are to be executed many times.
This can help increase efficiency as each dynamic SQL statement is built within
the engine once only. The odbc_prepare and odbc_execute functions are used to
execute prepared statements.

To summarize, migrating your PHP application from MySQL to Adaptive Server
Anywhere involves migrating the database, changing MySQL function calls to
Adaptive Server Anywhere calls, and tweaking the schema and SQL statements
to resolve any differences between the databases. Typically, some performance
gains can be achieved by utilizing advanced features available in Adaptive Server
Anywhere.

25

Copyright © 2004 iAnywhere Solutions, Inc.

Legal Notice
Copyright © 2004 iAnywhere Solutions, Inc. All rights reserved. Sybase, the
Sybase logo, iAnywhere Solutions, the iAnywhere Solutions logo, Adaptive
Server, MobiLink, and SQL Anywhere are trademarks of Sybase, Inc. or its
subsidiaries. All other trademarks are property of their respective owners.

The information, advice, recommendations, software, documentation, data,
services, logos, trademarks, artwork, text, pictures, and other materials
(collectively, “Materials”) contained in this document are owned by Sybase, Inc.
and/or its suppliers and are protected by copyright and trademark laws and
international treaties. Any such Materials may also be the subject of other
intellectual property rights of Sybase and/or its suppliers all of which rights are
reserved by Sybase and its suppliers.

Nothing in the Materials shall be construed as conferring any license in any
Sybase intellectual property or modifying any existing license agreement.

The Materials are provided “AS IS”, without warranties of any kind. SYBASE
EXPRESSLY DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES
RELATING TO THE MATERIALS, INCLUDING WITHOUT LIMITATION, ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. Sybase makes no warranty,
representation, or guaranty as to the content, sequence, accuracy, timeliness, or
completeness of the Materials or that the Materials may be relied upon for any
reason.

Sybase makes no warranty, representation or guaranty that the Materials will be
uninterrupted or error free or that any defects can be corrected. For purposes of
this section, ‘Sybase’ shall include Sybase, Inc., and its divisions, subsidiaries,
successors, parent companies, and their employees, partners, principals, agents
and representatives, and any third-party providers or sources of Materials.

Contact Us

iAnywhere Solutions Worldwide Headquarters One Sybase Drive, Dublin,
CA, 94568 USA

Phone 1-800-801-2069 (in US and Canada)

Fax 1-519-747-4971

World Wide Web http://www.ianywhere.com

E-mail contact.us@ianywhere.com

26

http://www.ianywhere.com

	Migrating a MySQL Database to Adaptive Server Anywhere 9
	Introduction
	Differences between MySQL and Adaptive Server Anywhere
	Data types
	MySQL function mappings to Adaptive Server Anywhere
	String functions
	Numeric functions
	Date and time functions

	Syntax mappings
	 Operators
	Data Manipulation Language
	Miscellaneous syntax

	Other migration issues

	Migrating a MySQL database to an Adaptive Server Anywhere database
	Creating an Adaptive Server Anywhere database
	Creating a data source for the MySQL database
	Migrating the MySQL database to Adaptive Server Anywhere
	Tweaking the new Adaptive Server Anywhere database

	Migrating applications from MySQL to Adaptive Server Anywhere
	Migrating a Perl application from MySQL to Adaptive Server Anywhere
	Migrating a PHP application from MySQL to Adaptive Server Anywhere
	Function mapping
	PHP migration notes

	Legal Notice
	Contact Us

