Technical Architecture for SAP HANA
A Transition to SAP HANA Initiative

SAP Active Global Support – IT-Planning
Disclaimer

This presentation outlines our general product direction and should not be relied on in making a purchase decision. This presentation is not subject to your license agreement or any other agreement with SAP. SAP has no obligation to pursue any course of business outlined in this presentation or to develop or release any functionality mentioned in this presentation. This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SAP assumes no responsibility for errors or omissions in this document, except if such damages were caused by SAP intentionally or grossly negligent.
Agenda

Transition to SAP HANA

Transition to SAP HANA - SAP AGS General Offering
Technical Architecture for SAP HANA
Planning Workshop
Delivery Model
Having data is not enough!
Are You A Real-Time Business?

Win Customers
- Will my systems deliver real-time performance for customers?
- Which customer profiles are suitable for loyalty rewards?
- How dynamic is your customer segmentation strategy?

Deliver Innovation
- How are products/services doing vs. their competition?
- Track complaints from call centers and social data in real-time?
- Where else is this part used in my company?

Drive Excellence
- IT Delivers ahead of business
- How can you predict supply chain disruptions ahead?
- How do suppliers rank by cost, quality and timeliness?
- How is my “on-time/in full” delivery rate by customer?
SAP AGS Value Based Delivery for SAP HANA
Addressing the Challenges to Support the Opportunity

The Opportunity

Run Better – Run your Best-Run Business on SAP HANA

- Unified and seamlessly integrated application and database stack
- Simplified maintenance
- Effective end-to-end operations support
- Reduced TCO
- Completely new possibilities with SAP HANA

The Challenge

Common Questions Related to the Adoption of SAP HANA...

- Will the new platform fulfill the performance requirements?
- How will SAP HANA fit into the existing infrastructure?
- What does it mean for the operations team?
- How to minimize business downtime for the transition?
- What is the project duration, related efforts and risks?

The Offering

SAP Solution Manager Based Methodology and SAP AGS Engineering Service

- Holistic approach, covering all phases and aspects of a migration project
- Address the related challenges proactively
- Apply best practices and experiences from supporting the top companies
- **Make a transition to SAP HANA safe, effective and predictable**
Support for the Transition to the SAP HANA Cloud Platform

Big Picture

Decision Making
- Help customers to comprehensively define strategic direction
- Understand the value of SAP HANA cloud platform
- Ensure that HANA platform capabilities provide benefits in future strategy

High-level planning
→ Roadmap definition
- Define a reasonable adoption roadmap – sequence of systems and projects – reflecting customer priorities (customer-specific business benefits from SAP HANA) and boundary conditions (size, HA/DR requirements, release dates, further projects,....)

Concrete Planning of Transition Project(s)
- Define a concrete project for the transition of one or multiple systems to HANA
 → migration methods, project approach, system landscape, role of MaxAttention,....

Work streams:
- Architecture & Infrastructure
- Migration & Test
- Performance & Scalability
- Operations Readiness
Transition to SAP HANA

Transition to SAP HANA - SAP AGS General Offering

Technical Architecture for SAP HANA

Planning Workshop

Delivery Model
Designing the Technical System Landscape for SAP HANA

Approach

- Introduction of typical architecture and landscape options
- Discussion of design aspects and definition of technical architecture building blocks. Major topics:
 - General SAP technical architecture
 - Availability SLAs, DC strategy & HA/DR architecture
 - IT infrastructure architecture
 - Scalability and load balancing
 - Software change management landscape
- Joint assessment of options according agreed set of evaluation criteria.

Objective

- Develop a technical architecture and IT Infrastructure concept for SAP solutions based on SAP HANA, considering customer’s boundary conditions.
The Technical Architecture for SAP HANA offering is delivered as a **flexible package** consisting of

- The **methodology and content implemented in SAP Solution Manager**
 - Focus on technical architecture of SAP HANA as well as the SAP application server layer
 - Best Practices and guidelines for each of the tasks
 - Templates for essential process steps

- **Onsite services**: Technical Architecture for SAP HANA – Planning Workshop
 - Tailored to the concrete customer situation
 - Delivered as independent workshop or in the context of other Transition to HANA related service offerings

Delivery model can be tailored in a flexible way to the concrete customer situation (partners, division of work, priorities in the project,....)
SAP Solution Manager Roadmap

Focus Areas

- Technical Architecture for SAP HANA
 - Scalability
 - HANA appliance, cloud and storage options
 - HA/DR with SAP HANA
 - PRD and non-PRD HANA solution landscape
- Technical Architecture for SAP Application Server layer
 - Sizing and scalability of SAP Solution Landscape
 - Server Platform and private cloud options
 - HA/DR for SAP application servers
Transition to SAP HANA

Transition to SAP HANA - SAP AGS General Offering
Technical Architecture for SAP HANA
Planning Workshop
Delivery Model
Technical Architecture for SAP HANA
Areas in planning workshop

<table>
<thead>
<tr>
<th>Areas</th>
<th>HANA Landscape</th>
<th>SAP Application Server Landscape</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>01: Current and planned SAP Landscape</td>
<td>• System landscape, (HW, size, DB/OS, Virtualization, DC, • Mid- and long term strategy (mergers and acquisitions, business growth, consolidation, new applications) • On-Premise – On Demand</td>
<td>• HW Platforms, virtualization, sizes, setup (2tier, 3tier, …), OS’s • SAP solution landscape - technical design (documents like TIC report, EWA …)</td>
<td>• Overview on current landscape • Future plans, assessment of change and potential risks</td>
</tr>
<tr>
<td>02: SAP HANA Platform in the Private Cloud</td>
<td>• Cloud definition • Major building blocks (Application layer, HANA Platform Layer, Storage Layer) • Architecture of the building blocks • SAP HANA as future platform in private cloud</td>
<td></td>
<td>• Understanding of future vision of SAP HANA platform in private cloud</td>
</tr>
<tr>
<td>03: Architecture Overview</td>
<td>• HANA Architecture • Appliance Model • HANA solutions</td>
<td>• SAP landscape (architecture, deployment options, …) • Solutions, instance structure, …</td>
<td>• Introduction into specific architecture topic • Presentation of architecture options which are already clear from the scoping</td>
</tr>
<tr>
<td>04: Sizing, Scalability, Performance</td>
<td>• Source and target system based on workload analysis (performance baseline in source system, migration to HANA, resizing, …) • Sizing methodology and approaches • Performance and scalability</td>
<td>• Size of current systems (core systems). • Scalability behavior of single systems. • Capacity planning</td>
<td>• Required capacity (& future outlook) and scalability assessment • Assessment of qualitative state of the systems • (documentation of performance-critical business areas)</td>
</tr>
</tbody>
</table>
Technical Architecture for SAP HANA

Areas in planning workshop

<table>
<thead>
<tr>
<th>Areas</th>
<th>HANA Landscape</th>
<th>SAP Application Server Landscape</th>
<th>Results</th>
</tr>
</thead>
</table>
| **05: Technical platform options and architecture** | • Cloud strategy (private, ...)
• Boundary conditions | • Single or scale out
• Scalability options
• SAP HANA Tailored Datacenter Integration concept
• HANA in the cloud
• Virtualization
• Different HANA partner solutions | • Virtualization (architecture for SAP, basic technical configuration)
• Server platform (UNIX / X86)
• Decision criteria to evaluate and assess the options
• Storage
• SAP AS architecture (basic technical configuration)
• Scalability, load distribution/balancing. | • Architectural outline of the options
• Description of the options
• Assessment along the decision criteria of the options
• Basic technical configuration based on best practices + expected future size (deployment options) |
| **06: High Availability / Disaster Recovery / Backup & Restore** | • Availability classification and requirements (RPO / RTO)
• Error categories
• DC Strategy
• Landscape aspects to backup/recovery
• Business aspects | • High Availability and Disaster Recovery capabilities provided by the SAP HANA platform
• DR in the cloud or on non-PRD
• Backup and recovery solutions and integration into existing backup solutions provided by partners | • Decision on required HA / DR / backup / restore technology and architecture of entire solution stack including HANA |
Technical Architecture for SAP HANA

Areas in planning workshop

<table>
<thead>
<tr>
<th>Areas</th>
<th>HANA Landscape</th>
<th>SAP Application Server Landscape</th>
<th>Results</th>
</tr>
</thead>
</table>
| 07: PRD and non-PRD SAP System landscape | • High-level Software change management (non-PRD landscape, use cases, …)
• Number, size, … of non-PRD
• Data quality in non-PRD (QA, …)
• HANA options for non-PRD systems
• HANA stacking options (MCOD, multi-SID, Virtualization) | • Stacking options (if applicable)
• SAP system landscape platform usage and distribution (virtualization, server platform,) | • Complete Picture of SAP system mapping to servers platforms
• HA DR backup technology
• RZ setup |
| 08: Future Planning | • Project setup
• Roles and responsibilities
• Partner relationships (HW, hosting partner, implementation, …)
• Risks collection | | • Next Steps
• Roles and responsibilities plan |
Scalability, Sizing and Performance Overview and Procedure for HANA Sizing

Preparation

- BW on HANA
 - Run ABAP report (see note 1736976)
 - Housekeeping (reduce PSA and ChangeLog)

- HANA
 - Estimate upcoming data volume (e.g. analyze current ERP tables)

Sizing Calculation

- Memory Sizing
 - Row Store
 - Column Store
 - Additional Caches

- CPU Sizing
 - Determine by memory size and hardware offerings

- Disk Sizing
 - Data Volume (persistence)
 - Log Volume

Infrastructure

- Single Node
 (Total Memory < 4 TB*)
 - Not possible for BW on HANA

- Scale-Out
 (Total Memory > 750 GB)
 - Shared Storage
 - BW on HANA needs at least 3 nodes
 - Additional Stand-by node possible

* Certification pending as of today
Scalability, Sizing and Performance
Sizing for Growth – Example

Calculation of system growth over time and the impact on the memory areas (Scale-out scenario)

Add one more node

Add a further node

→ **Proactive** and seamless extension of the hardware capacity

![Graph showing memory growth over time with timelines for 01.01.2013 to 01.01.2018 with colored bars for different memory areas and a line graph indicating growth over time.]

<table>
<thead>
<tr>
<th>Area</th>
<th>Affected by growth?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>No</td>
</tr>
<tr>
<td>HANA caches / services</td>
<td>No</td>
</tr>
<tr>
<td>HANA working memory</td>
<td>yes, indirectly</td>
</tr>
<tr>
<td>Business Data (column store)</td>
<td>yes</td>
</tr>
<tr>
<td>Meta data (row store)</td>
<td>partially, if growth affects DDIC entries or meta data</td>
</tr>
<tr>
<td>Space for business growth</td>
<td>Yes, decreases if other memory areas grow</td>
</tr>
</tbody>
</table>
Technical platform options and architecture

SAP HANA scales from small servers to large clusters

Single Server
- 2 CPU 128GB to 8 CPU 1TB (Special layout for Suite on HANA for up to 4 TB per host)
- Single SAP HANA deployments for data marts or accelerators
- Support for high availability and disaster recovery

Scale Out Cluster
- 2 to n servers per cluster
- Each server is either 4 CPU/512GB or 8 CPU/1TB
- Largest certified configuration: 56 servers
- Largest tested configuration: 100+ servers
- Support for high availability and disaster recovery
Technical platform options and architecture

SAP HANA Storage Scalability – HANA Tailored Datacenter Integration

<table>
<thead>
<tr>
<th>SAP HANA Appliance without internal Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP HANA Single-Node</td>
</tr>
<tr>
<td>Extend or replace server nodes and increase central storage</td>
</tr>
<tr>
<td>Central Enterprise Storage System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAP HANA Scale-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add server nodes and increase central storage</td>
</tr>
<tr>
<td>• SAP HANA appliance extension may require new server rack and network components.</td>
</tr>
</tbody>
</table>

© 2013 SAP AG or an SAP affiliate company. All rights reserved.
Technical platform options and architecture
SAP HANA Infrastructure - Use Existing Enterprise Storage for all Workloads

SAP HANA Tailored Datacenter Integration
Technology Foundation for SAP HANA Platform in the Private Cloud

Enterprise Storage - SAP HANA Tailored Datacenter Integration
- Existing enterprise storage used for HANA data volumes & all other data volumes of customers IT landscape
- Storage scales with changing business requirements
- Existing storage infrastructure and management infrastructure in place and used for HANA workload
High Availability / Disaster Recovery, Backup & Restore

Data Center Setup Options

A 2 nearby Data Centers
- Protection against infrastructure failures
- Protection against loss of DC, but **no protection** against regional disasters
- Prerequisite: Stable, low latency network

B 2 distant Data Centers
- Protection against infrastructure failures and regional disasters
- Higher cost for infrastructure protection than (A), more hardware redundancy required

C Star Setup with 3 Data Centers
- Extension of 2 DC options to maximize data security and availability
- Different options for the setup of 3rd data center, depending on recovery time requirements:
 I. Data protection: Storage of backup devices / tapes
 II. Data protection: Storage systems only + asynchronous replication of data
 III. Data + infrastructure protection: Full server and storage hardware + asynchronous replication of data
High Availability / Disaster Recovery, Backup & Restore
Technical Building Blocks for Your HA/DR Strategy

SAP HANA Host Auto Failover
- Failover to standby server nodes in same appliance
- Failover control automated within SAP HANA
- Short recovery time, no data loss
- For scale-out configurations

SAP HANA System Replication
- Synchronous or asynchronous standby database
- Technical corruption protection (block corruption on storage level)
- Hardware of standby database can be reused for non-production systems
- Short recovery time, no data loss (or limited if async mode is used)
- For scale-up or scale-out appliances
Pragmatic & server virtualization approach

3 system landscape
- Use of virtual machines from VMware is supported for non-PRD on HANA single nodes
- The use of virtual machines depends on the size of the planned HANA non-PRD systems
- Disadvantage with this implementation is that QAS is from a HW perspective not comparable to the PRD system e.g. to test performance aspects during development projects

Pragmatic & server virtualization approach
multi system landscape
- With the use of a pre-PRD system the above mentioned aspect is solved
Agenda

Transition to SAP HANA

Transition to SAP HANA - SAP AGS General Offering
Technical Architecture for SAP HANA
Planning Workshop

Delivery Model
This offering delivered via the SAP MaxAttention and SAP ActiveEmbedded support engagement model means …

- … **tailored** to concrete customer situations
- … **leveraging experiences** from many years of working with companies in all industries and **providing them in a consistently consumable way via SAP Solution Manager**
- … **providing different delivery options** – ranging from provisioning of best practices to remote enabling to onsite services – creating flexibility to define a project in a customer-specific way
- … laying the foundation to **ensure a consistent quality** of migration projects independent of which company or partner executes the tasks
Benefits
Holistic DB Migration Offering to SAP HANA or SAP Sybase ASE

<table>
<thead>
<tr>
<th></th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Risk mitigated</td>
</tr>
<tr>
<td></td>
<td>Keep risks under control</td>
</tr>
<tr>
<td>2</td>
<td>Fast time-to-value</td>
</tr>
<tr>
<td></td>
<td>Benefit from existing knowledge to speed up migration</td>
</tr>
<tr>
<td>3</td>
<td>Tailor fit</td>
</tr>
<tr>
<td></td>
<td>Flexible plan service to local customer situation</td>
</tr>
<tr>
<td>4</td>
<td>Content</td>
</tr>
<tr>
<td></td>
<td>Leverage the SAP Solution Manager roadmap</td>
</tr>
</tbody>
</table>
Thank you

Contact information:
SAP Active Global Support - IT-Planning
SAP_AGS_IT_Planning@sap.com