
Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 1

Creating SAP xMII 11.5 User-Defined Action Blocks

Applies to:
xMII 11.5 SP3

Summary
This article will describe step-by-step the process of writing user-defined Action Blocks in Java which can be
deployed in xMII 11.5 SP3 and manipulated using xMII’s Business Logic Editor.
Author: Tim Drury
Company: Visiprise
Created on: 10 October 2007

Author Bio
Tim Drury is the lead Integration Architect at Visiprise, a leader in discrete manufacturing execution software.
Tim has a bachelor’s degree in electrical engineering from the Georgia Institute of Technology where he
studied real-time embedded systems and data acquisition systems. He spent 14 years building embedded
systems before realizing his software skills were not on par with his hardware skills. Focusing on software,
Tim came to the realization that software development has less expensive, faster development cycles than
hardware development – perfect for someone with a short attention span and little patience. Hardware
development is now relegated to hobby status along with all things in the realm of motorsports. Tim has
spent the last 8 years writing software to integrate applications, machines, and technology now with a focus
on manufacturing. On the side he tinkers with race car data acquisition and control systems.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 2

Table of Contents
Applies to: .. 1
Summary.. 1
Author Bio .. 1
Introduction .. 3
xMII Text File Issues.. 3
xMII Binary File Issues... 4
Enter the User-Defined Action... 5

The CopyFile Action Class.. 5
The Copy File Dialog.. 8
Compiling The Action and Dialog Classes... 12
The Action Assembly Jar ... 12
The Action Assembly Catalog.. 12
Deploying Our User-Defined Action... 14

NIO File Copy Action Results .. 15
More to come… ... 17
Related Content... 17
Disclaimer and Liability Notice... 18

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 3

Introduction
SAP xMII is a toolkit for building manufacturing business processes and visualization dashboards. It
maintains a smart balance between functionality and succinctness – it provides just enough Action Blocks
and software operations to build almost any integration workflow. However, over time an xMII developer will
uncover situations where the stock xMII Action Block palette doesn’t provide the functionality or performance
required. Enter the user-defined Action Block, or action. In xMII 11.5 (and 12.0) it is possible to create your
own Action Blocks in Java and make them available in the xMII Business Logic Editor action palette and the
xMII engine. In this first article, I’m going to demonstrate how to create and deploy a file copying action
imaginatively named FileCopy. FileCopy will use Java’s Native I/O (NIO) package to greatly improve the
performance of copying files.

xMII Text File Issues
Copying a text file in xMII is trivial. You drop in a Text Loader action followed by a Text Saver action
and link the Loader’s Contents output to the Saver’s Contents input. The results of copying a 1 MB text
file are reasonable as Figure 1 can attest. It took 78 ms in this particular screenshot from my Dell Latitude
D620 laptop to copy the 1 MB text file. I ran the test several times (both before and after the subsequent
tests) and saw some variation in times but 70 ms was about average. Don’t put too much weight on the
absolute numbers from these tests – instead we’ll focus on the relative differences of the times of the tests.

Figure 1.
The Text
Loader action can
copy a 1 MB text
file in 78ms.

Let’s try the same experiment with a 100 MB text file. We can guess it may take 100 times longer to copy
this file, but instead we see it takes 16 seconds – some 200 times longer than copying the 1 MB text file
(Figure 2).

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 4

Figure 2.
The Text
Loader took 16
seconds to copy a
100 MB text file –
a factor of 200
times longer than
test 1 MB text file.

However, more troubling than the unintuitive time difference is the gluttonous memory consumption. Figure
3 is from xMII’s Java Runtime Status applet and shows the heap taking a precipitous, lemming-like dive as
soon as the test started. Had my JVM not had a generous 512 MB heap, I would likely be showing a
screenshot of an OutOfMemoryError stack trace. The reason for this? Text Loader reads the entire
100 MB text file into a StringBuffer before writing the output file. That’s not good.

Figure 3.
The Text
Loader action
reads the entire
100 MB text file
into memory
before writing it
back out again.
This could be a
problem for JVMs
with limited heap.

xMII Binary File Issues
Another functionality gap with xMII 11.5 is the lack of actions for copying and/or manipulating binary files.
More fundamentally, it xMII’s lack of a binary property type. What xMII does provide is the Image Loader
and the Image Saver actions. However, Image Loader must perform Base64 encoding on the binary
stream to convert it to xMII’s Text type because there is no binary type available. Likewise, the Image
Saver requires its input to be a Base64 encoded Text type to write the binary stream to a file. This
conversion imposes a harsh performance penalty when copying binary files. Indeed, Figure 4 shows that
xMII required 21 seconds to copy a 1 MB binary file – recall it took only 78 ms to copy a 1 MB text file.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 5

Figure 4.
The Image
Loader action
reads a 1 MB
binary file and the
Image Saver
writes this file
back to the disk –
total time is 21
seconds.

Compounding the performance penalty, take a look at the CPU usage during the binary file copying process
(Figure 5). Base64 encoding the binary stream and decoding the text stream back to binary takes a heavy
toll on the CPU. This would usually be grudgingly tolerated if we truly needed to move binary into the text
domain and vice versa, but that’s not the case here – we don’t need these binary-to-text and text-to-binary
conversions so why do we have to pay a penalty?

Figure 5.
Base64 encoding of a binary
stream takes its toll on my
CPU. This is especially
disheartening considering I
don’t need the binary to be
encoded – I would have liked it
to remain in binary.

Enter the User-Defined Action
There doesn’t seem to be any published APIs for building your own action blocks in xMII, but there is
information to be found if you know where to look – or who to ask. To remedy this, I will show the two
required classes for our CopyFile action with some descriptive commentary. Then I will show how to
bundle and deploy the user-defined action assembly into xMII 11.5. Lastly, we’ll compare and contrast the
results of our CopyFile action with the text and binary file copy transactions created with the stock xMII
actions.
xMII action require two classes: an action class and a configuration class. The action class provides the run-
time behavior of the action and is called by the xMII engine when the CopyFile action is placed in an xMII
transaction. The second is a Swing class used by the Business Logic Editor (BLE) – the Java Web Start
application we use to build xMII transactions.

The CopyFile Action Class
The xMII developers were kind enough to provide a base class for xMII actions called
ActionReflectionBase. By extending this class most of the development effort will already be done. In
a later installment I’ll dive deeper in ActionReflectionBase, what interfaces it implements, and when you
wouldn’t want to extend it.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 6

First, we declare our CopyFile action’s package namespace:

package com.visiprise.app.integration.sap.xmii.actions.util;

I’m not going to include the import statements since most IDEs can determine which imports are missing
and create them. Next, we have our class declaration extending ActionReflectionBase:

public class CopyFile extends ActionReflectionBase {

Our CopyFile action requires five attributes. We need a String to hold the path of the file to be copied
(the source file) and a String for the path of the file to be created (the destination file). We’ll give the
user a boolean flag to indicate whether we should overwrite any pre-existing destination file. We’ll also
want a String message to hold the action status which will provide some feedback to the user informing
them of the outcome of the CopyFile action. The last attribute, a boolean status flag named _status, is
declared in ActionReflectionBase so we don’t need to declare it here.

 private String source;
 private String destination;
 private boolean overwrite = false;
 private String message = "";

Here are some standard Java Bean-style getters and setters and now we’ll see how extending
ActionReflectionBase helps us. As its name implies, ActionReflectionBase will use Java
reflection to determine the inputs and outputs of the CopyFile action. The inputs and outputs are used in
the BLE link editor to map actions’ arguments to one another, and by the xMII engine to perform the run-time
binding of real values to these links. All public methods that begin with “get” or “is” will be parsed to create
outputs for the CopyFile action…

 public String getSource() {
 return source;
 }
 public String getDestination() {
 return destination;
 }
 public boolean getOverwrite() {
 return overwrite;
 }
 public String getMessage() {
 return message;
 }

…and all public methods that begin with “set” will be parsed to create inputs for the CopyFile action. The
actual names of the inputs and outputs are the method name without the “get”, “set”, or “is” prefix. You
may notice that I did not create a setMessage() method. This message is an internally generated status
and it wouldn’t make sense to give the user the ability to set it. By not providing a setMessage() method,
ActionReflectionBase will not create an input for our message attribute keeping it from appearing in the
BLE link editor.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 7

 public void setSource(String source) {
 this.source = source;
 }
 public void setDestination(String destination) {
 this.destination = destination;
 }
 public void setOverwrite(boolean overwrite) {
 this.overwrite = overwrite;
 }

ActionReflectionBase also provides a helper method that will load an icon given its path relative to the
xMII CLASSPATH – we only need to provide the path. This icon is used in the BLE action palette. The
CopyFile action’s icon is in a folder called /icons which resides in the root of a jar file. I’ll describe this jar
file a little later.

 public String GetIconPath() {
 return "/icons/CopyFile.png";
 }

Now we’ve finally arrived at the interesting part of the CopyFile action – the Invoke() method. This
method is called by the xMII engine when its turn to execute has arrived. Class attributes represented as
inputs will have values bound to the attribute references by the xMII engine prior to Invoke() being
executed. Invoke() is also provided a reference to the xMII transaction in which the action resides and a
logger for writing status messages. You may notice that CopyFile has no need to use the transaction
reference – in fact, I have yet to encounter a circumstance needing it, but I’ve only recently begun writing
xMII actions. All the code within CopyFile’s Invoke() method is the typical Java NIO file-copy algorithm.

Since I’m not entirely sure how xMII deals with exceptions thrown from within the Invoke() method, I catch
Exception itself. I don’t want to catch Throwable because there isn’t much my CopyFile action can do
with a ThreadDeath or OutOfMemoryError. Also, for the sake of brevity I create an Exception for all
error conditions within my try block – this is not a Java best-practice as exception handling is expensive in
terms of performance. This action would execute more quickly if, for each error condition, I simply set the
message and _status and then returned.

 public void Invoke(Transaction transaction, ILog log) {
 FileInputStream sourceStream = null;
 FileOutputStream destinationStream = null;
 FileChannel sourceChannel = null;
 FileChannel destinationChannel = null;
 try {
 if (source == null)
 throw new Exception("Source file is not defined.");
 if (destination == null)
 throw new Exception("Destination file is not defined.");
 // validate source file
 File in = new File(source);
 if (!in.exists())
 throw new Exception("Source file \""+source+"\" not
found.");
 if (in.isDirectory())
 throw new Exception("Source file cannot be a
directory.");
 // validate destination file

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 8

 File out = new File(destination);
 if ((!overwrite) && (out.exists())) throw new
Exception("Destination file \""+destination+"\" exists and overwrite mode is
off.");
 // create NIO file channels and copy the file
 sourceStream = new FileInputStream(in);
 sourceChannel = sourceStream.getChannel();
 destinationStream = new FileOutputStream(out);
 destinationChannel = destinationStream.getChannel();
 long num = sourceChannel.transferTo(0, sourceChannel.size(),
destinationChannel);
 message = "copied ["+num+"] bytes from ["+source+"] to
["+destination+"]";
 _success = true;
 } catch (Exception ex) {
 message = ex.getMessage();
 log.error("Copy File Error: " + message);
 _success = false;
 } finally {

We would never think of performing I/O without a finally block to clean up our resources would we?

 if (sourceChannel != null)
 try { sourceChannel.close(); } catch (IOException ex) {
 log.debug("CopyFile: source channel failed to
close cleanly; error="+ex.getMessage()); }
 if (destinationChannel != null)
 try { destinationChannel.close(); } catch (IOException
ex) {
 log.debug("CopyFile: destination channel failed to
close cleanly; error="+ex.getMessage()); }
 if (sourceStream != null)
 try { sourceStream.close(); } catch (IOException ex) {
 log.debug("CopyFile: source stream failed to close
cleanly; error="+ex.getMessage()); }
 if (destinationStream != null)
 try { destinationStream.close(); } catch (IOException
ex) {
 log.debug("CopyFile: destination stream failed to
close cleanly; error="+ex.getMessage()); }
 }
 }
}

The Copy File Dialog
Each action in the xMII BLE can be manipulated by two dialogs: the configuration dialog and the link editor
dialog. The link editor dialog is managed entirely by xMII; its only requirement of our user-defined action is to
make sure our action implements the IMappable interface which ActionReflectionBase does for us.
This is the interface used to acquire the action’s input and output names, types, and values. The
configuration dialog, on the other hand, is entirely our responsibility to construct and manage. Figure 6
shows the CopyFile configuration dialog.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 9

Figure 6.
The Copy File
Configuration
dialog box is a
simple Swing
JDialog.

Now let’s go through the CopyFile configuration dialog class. The package namespace is the same as the
CopyFile action class:

package com.visiprise.app.integration.sap.xmii.actions.util;

I’ll skip the import statements again. AbstractActionDialog is another helpful base class that can be
extended to minimize development effort:

public class CopyFileDialog extends AbstractActionDialog {

We only need three Swing widgets to configure the CopyFile action. The source text field will hold a path
to the file being copied, the destination text field will hold a path to the destination file to create or
overwrite, and the overwrite check box indicates if overwriting an existing destination file is allowed.

 private JTextField source;
 private JTextField destination;
 private JCheckBox overwrite;

We don’t have any initialization to perform, so our constructors can simply defer to the
AbstractActionDialog’s constructors:

 public CopyFileDialog(JFrame parentFrame, Object actionObject, Transaction
transaction, Step selectedAction) {
 super(parentFrame, actionObject, transaction, selectedAction);
 }
 public CopyFileDialog(JDialog parentFrame, Object actionObject,
Transaction transaction, Step selectedAction) {
 super(parentFrame, actionObject, transaction, selectedAction);
 }

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 10

prepareDialog() is used to give the configuration dialog box a size and title and
createLayoutObjects() initializes the configuration dialog Swing widgets:

 public void prepareDialog() {
 setSize(400, 250);
 setTitle("Copy File Configuration");
 }
 public void createLayoutObjects() {
 source = new JTextField(20);
 destination = new JTextField(20);
 overwrite = new JCheckBox("Overwrite?");
 }

layoutMainPanel() is the method in which the configuration dialog is constructed. I’ve chosen to use the
GridBagLayout layout manager which provides the most flexibility when constructing Swing dialogs, but
you’re free to use any of the Swing layout managers. If you’re not familiar with Swing, then you’re going to
have to trust me here since a detailed discussion of Swing is out of scope for this article. I’m not going to
describe my rationale for these GridBagConstraints (nor will I defend them), but you’re welcome to learn
about them yourself in the Java Swing tutorial.

layoutMainPanel() begins by creating a panel to hold the three configuration dialog widgets – the two
text fields and the check box – as well as some labels. The panel is assigned the GridBagLayout
manager and GridBagConstraints will be created:

 public void layoutMainPanel() {
 JPanel panel = new JPanel(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();

The widgets are placed in the panel from top-to-bottom and left-to-right. The first widget placed is a label for
the source text field. Then we place the source text field widget itself:

 gbc.gridy = 0;
 gbc.insets = ActionUtilities.standardSquareInsets;
 gbc.weightx = 0.1;
 gbc.fill = GridBagConstraints.NONE;
 gbc.anchor = GridBagConstraints.WEST;
 panel.add(new JLabel("Source File"), gbc);
 gbc.weightx = 0.9;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 panel.add(source, gbc);

Then a label for the destination text field followed by the text field itself:

 gbc.gridy = gbc.gridy+1;
 gbc.insets = ActionUtilities.standardSquareInsets;
 gbc.weightx = 0.1;
 gbc.fill = GridBagConstraints.NONE;
 gbc.anchor = GridBagConstraints.WEST;
 panel.add(new JLabel("Destination File"), gbc);
 gbc.weightx = 0.9;
 gbc.fill = GridBagConstraints.HORIZONTAL;

http://java.sun.com/docs/books/tutorial/uiswing/

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 11

 panel.add(destination, gbc);

Then the overwrite check box is added. Since a Swing check box already has a label, I don’t need to
create a label for it, but to keep the widgets in line vertically, I’ve added an empty label widget:

 gbc.gridy = gbc.gridy+1;
 gbc.insets = ActionUtilities.standardSquareInsets;
 gbc.weightx = 0.1;
 gbc.fill = GridBagConstraints.NONE;
 gbc.anchor = GridBagConstraints.WEST;
 panel.add(new JLabel(""), gbc);
 gbc.weightx = 0.9;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 panel.add(overwrite, gbc);

The last step is to add this panel to the configuration dialog widget. I use GridBagLayout for the
configuration dialog also and I create a fresh set of GridBagConstraints – this isolates changes that may
be made to the above GridBagConstraints from inadvertently impacting this new dialog layout. We add
the panel we constructed above to this new dialog, and we add a button panel provided by our
AbstractActionDialog parent class. This button panel contains the “OK”, “Cancel”, and “Help” buttons
and AbstractActionDialog handles the events generated by those buttons for us:

 getContentPane().setLayout(new GridBagLayout());
 GridBagConstraints gbc1 = new GridBagConstraints();
 gbc1.insets = ActionUtilities.standardSquareInsets;
 gbc1.gridy = 0;
 gbc1.weightx = 1.0;
 gbc1.weighty = 1.0;
 gbc1.fill = GridBagConstraints.BOTH;
 getContentPane().add(panel, gbc1);
 gbc1.gridy = gbc1.gridy + 1;
 gbc1.weightx = 1.0;
 gbc1.weighty = 0.0;
 gbc1.fill = GridBagConstraints.NONE;
 gbc1.anchor = GridBagConstraints.EAST;
 getContentPane().add(okPanel, gbc1);
 }

The last two methods are the pivotal ones. setAction() is responsible for setting the values in the
configuration dialog widgets from the actual values that have been assigned to the CopyFile action object.
The actionObject attribute used below is provided by AbstractActionDialog and always provides a
valid reference to our CopyFile action object:

 public void setAction(Object obj) {
 source.setText(((CopyFile)actionObject).getSource());
 destination.setText(((CopyFile)actionObject).getDestination());
 overwrite.setSelected(((CopyFile)actionObject).getOverwrite());
 }

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 12

performOK() does the reverse of setAction() above – it takes the values entered into the CopyFile
configuration dialog widgets and assigns these values to the corresponding reference in the CopyFile
action object:

 public boolean performOK() {
 ((CopyFile)actionObject).setSource(source.getText());
 ((CopyFile)actionObject).setDestination(destination.getText());
 ((CopyFile)actionObject).setOverwrite(overwrite.isSelected());
 return true;
 }
}

Compiling The Action and Dialog Classes
To compile the CopyFile and CopyFileDialog classes, some xMII classes need to be included on the
compilation CLASSPATH. These classes can be found in <ServletExecHome>\se-
xMII\webapps\default\Lighthammer\WEB-INF\classes. The jar, <ServletExecHome>\se-
xMII\webapps\default\Lighthammer\WEB-INF\lib\LHCommon.jar, may also be required.

The Action Assembly Jar
To deploy user-defined actions within xMII, create a jar for the class files and icons. Figure 7 below shows
the jar structure containing the CopyFile action and configuration dialog classes (as well as some other
actions I created). The /icons folder in the root of the jar contains the icon PNG files which will be shown in
the BLE action palette. The /META-INF folder contains a standard MANIFEST.MF file – there are no special
entries in this file.

Figure 7.
The structure of the jar containing
our xMII 11.5 user-defined
actions is very simple. Our
classes and icons are in the root
of the jar along with the META-
INF folder for the manifest file.
There are no special contents in
the manifest.

The Action Assembly Catalog
The last file needed is an XML deployment descriptor, or action catalog. This file will describe to xMII the
actions contained within the jar, above, and provide metadata for the BLE. For brevity’s sake, I removed all
the <Component> entries except for the CopyFile action. Refer to Figure 8 below for the remainder of the
description of the action catalog.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 13

Figure 8.
This diagram shows how the action assembly
catalog elements map to xMII classes and how
the catalog element attributes map to visual
elements of the xMII Business Logic Editor.

The <Category> element creates a new ActionComponentBar in the BLE action palette and the Name
attribute of <Category> is the label displayed at the top of the ActionComponentBar. An
ActionComponentBar is the accordion-like widget in the action palette (see) which holds the actions we
define using the <Component> element below. Within the ActionComponentBar are xMII Swing widgets
known as ActionIcons and each keeps a reference to an ActionComponent which is a simple Java
Bean that holds all the metadata in the action’s <Component> entry of the action catalog. I do not know of
any use of the <Category>’s Description attribute.

<?xml version="1.0" encoding="UTF-8"?>
<ComponentCatalog>
 <Category Name="Visiprise"
 Description="SAP Manufacturing Execution System by
Visiprise">

For this article, I’ve removed all the <Component> entries except for the CopyFile action. For each action
to be included within the ActionComponentBar, create a <Component> element with the attribute Type of
“Action”:

 <Component Type="Action"

The <Component> Name attribute serves two purposes. Its primary purpose is as a widget identifier – it is
used internally by xMII as the ActionIcon’s AWT source name. If you’re not familiar with AWT, source
is an identifier for the widget which AWT places within any AWT EventObject that originated from the
widget. Name should be unique within the <Category>. Name‘s other purpose is to be the base of the

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 14

instantiated action’s name within a sequence; xMII will append a unique Integer suffix of the form “_nn” to
Name:

 Name="CopyFile"

I have found no use for the Description attribute:

 Description="Copy a file"

The Label attribute’s value, “Copy File” in this example, is added to the ActionIcon widget and displayed
under the action’s icon within the ActionComponentBar:

 Label="Copy File"

ClassName should be set to the fully qualified name of the action. In this example, it refers to the
CopyFile action class name:

 ClassName="com.visiprise.app.integration.sap.xmii.actions.util.CopyFile"

The AssemblyName attribute identifies the jar that contains the user-defined action classes and icons.
Exactly where this assembly jar must be placed is discussed in the deployment section below.

 AssemblyName="verpsfi-actions-2.0.jar"

The HelpFileName attribute is part of a URL which xMII adds to the base URL,
“/LighthammerCMS/Help/SAP_xMII_Help.htm#Business_Logic_Services/” and adds the suffix “.htm”. This
URL is loaded in a browser when the Help button is clicked in the configuration dialog. For example, if
HelpFileName was defined as “CopyFileHelp”, then clicking the CopyFile configuration dialog’s help
button would load URL
“/LighthammerCMS/Help/SAP_xMII_Help.htm#Business_Logic_Services/CopyFileHelp.htm”. Since it would
be difficult for us to locate a help file at that URL, the HelpFileName provides no help to us.

 HelpFileName=""/>
 </Category>
</ComponentCatalog>

Deploying Our User-Defined Action
To deploy the user-defined actions, shut down xMII by stopping the ServletExec service. Then copy the
assembly jar to two directories:

• <ServletExecHome>\se-xMII\webapps\default\Lighthammer\WEB-INF\lib

This directory is accessed by the xMII engine which must be able to access the CopyFile action class so it
can run its Invoke() method.

• <ServletExecHome>\se-xMII\webapps\default\Lighthammer\CMSLogicEditor

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 15

And this directory is used by the BLE’s Web Start application. All the jars in this directory will be bundled up
in the Web Start archive and distributed to all the xMII clients.

Be sure to clear your client’s Java Web Start cache every time the user-
defined action assembly jar is updated and deployed.

Last, but not least, the action catalog file must be placed in the directory:

• <LighthammerHome>\Xacute\Components

Restart ServletExec and you should be ready to use your new xMII actions!

NIO File Copy Action Results
So how well does the CopyFile action perform? See for yourself. Figure 9 shows the results of copying the
same 1 MB text file we copied back in Figure 1. The first time I ran it, it took 78ms – the same amount of
time the Text Loader/Text Saver transaction took on average. Subsequent tests resulted in execution
times between 16ms and 32ms which is likely the resolution limit of my PC’s clock.

Figure 9.
The NIO-based CopyFile
action required between
16ms and 32ms to copy a 1
MB text file.

Figure 10 shows the results of copying the 100 MB text file. The first execution of the transaction took
around 7 seconds and each test thereafter took less than 4 seconds. The Text Loader/Text Saver
transaction test required 16 seconds to copy the 100 MB file.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 16

Figure 10.
The NIO-based
FileCopy
action required
only 4 seconds
to copy a 100
MB text file.

However, the real problem with copying the 100 MB file with the Text Loader/Text Saver transaction
was its insatiable appetite for heap. Figure 11 shows my NIO-based FileCopy action’s heap usage - or
lack thereof. The FreeMemory graph didn’t move from its initial starting point of 2.777 MB throughout all my
FileCopy tests.

Figure 11.
FileCopy
used no
discernable
heap storage
while copying
a 100 MB file.

The 1 MB binary file copying test results shouldn’t surprise anyone (see Figure 12). It took the same amount
of time to run – between 16ms and 32ms – as the 1 MB text file copying test. This is because NIO sees no
difference between a binary file and a text file and it doesn’t perform any sort of binary-to-text conversion.

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 17

Figure 12.
As with the 1 MB text file
test, the NIO-based
FileCopy action required
between 16ms and 32ms
to copy a 1 MB binary file.
This isn’t surprising since
a text file is essentially a
binary file.

The lack of binary-to-text and text-to-binary conversion is evident in the CPU load during the test (see Figure
13). In fact, I ran the test a dozen or more times during this period in an attempt to get the CPU graph to
show any sort of obvious activity.

Figure 13.
Believe it or not, I ran the 1 MB
binary file copy test with the
FileCopy action a couple dozen
times within the span of this CPU
graph snapshot. Can you tell?

More to come…
With the fundamentals of writing xMII actions covered, what’s next? In the next installment, I’ll uncover the
details of an action which extends xMII’s existing Call Transaction action and eliminate one of its
limiting deficiencies. This custom action also has the pleasant side-effect of imbuing xMII with an interface-
based development paradigm which greatly improves the efficacy of multi-developer teams.

Related Content
• SDN xMII Forum

• SDN xMII wiki

• xMII 11.5 Help

• Java Swing Tutorial

https://www.sdn.sap.com/irj/sdn/forum?forumID=237
https://wiki.sdn.sap.com/wiki/display/xMII
http://help.sap.com/saphelp_xmii115/helpdata/en/index.htm
http://java.sun.com/docs/books/tutorial/uiswing/

Creating SAP xMII 11.5 User-Defined Action Blocks

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 18

Disclaimer and Liability Notice
This document may discuss sample coding or other information that does not include SAP official interfaces
and therefore is not supported by SAP. Changes made based on this information are not supported and can
be overwritten during an upgrade.
SAP will not be held liable for any damages caused by using or misusing the information, code or methods
suggested in this document, and anyone using these methods does so at his/her own risk.
SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of
this technical article or code sample, including any liability resulting from incompatibility between the content
within this document and the materials and services offered by SAP. You agree that you will not hold, or
seek to hold, SAP responsible or liable with respect to the content of this document.

	Applies to:
	Summary
	Author Bio
	
	Introduction
	xMII Text File Issues
	xMII Binary File Issues
	Enter the User-Defined Action
	The CopyFile Action Class
	The Copy File Dialog
	Compiling The Action and Dialog Classes
	The Action Assembly Jar
	The Action Assembly Catalog
	Deploying Our User-Defined Action
	NIO File Copy Action Results
	More to come…
	Related Content
	 Disclaimer and Liability Notice
	

