
Utilizing the New ALV Object Model 

 

 

 
 

SDN Community Contribution 

(This is not an official SAP document.) 

 

 

Disclaimer & Liability Notice 

This document may discuss sample coding or other information that does not include SAP official interfaces 
and therefore is not supported by SAP. Changes made based on this information are not supported and can 
be overwritten during an upgrade. 

SAP will not be held liable for any damages caused by using or misusing the information, code or methods 
suggested in this document, and anyone using these methods does so at his/her own risk. 

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of 
this technical article or code sample, including any liability resulting from incompatibility between the content 
within this document and the materials and services offered by SAP. You agree that you will not hold, or seek 
to hold, SAP responsible or liable with respect to the content of this document. 

 

 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 1
  



Utilizing the New ALV Object Model 

 

Applies To:  

The code sample in this paper can be used on SAP NetWeaver 04 (Web AS 6.40) or later. 

Summary 

This code sample presents a report template that utilizes the new ALV Object Model. 

An additional updated code sample is available that demonstrates a different class hierarchy using interface 
methods.  Although you can download the updated code (refactoring.zip), we would encourage you to use the 
Refactoring Assistant to make the changes to the original code sample. If you need help with the Refactoring 
Assistant, see Tomas Ritter’s Refactoring ABAP classes weblog describing this tool.  

By: Thomas Jung 

Company: Kimball International, Kimball Electronics Group 

Date: 21 October 2005 

Applies To:........................................................................................................................................2 

Summary ..........................................................................................................................................2 

Introduction.......................................................................................................................................3 

Template Program ........................................................................................................................3 

Output ...........................................................................................................................................6 

Template Class.............................................................................................................................6 

CONSTRUCTOR ......................................................................................................................7 

F4_LAYOUTS ...........................................................................................................................8 

GET_DEFAULT_LAYOUT........................................................................................................8 

EVENT Handlers.......................................................................................................................9 

AUTH_CHECK..........................................................................................................................9 

SET_REPORT_TITLE ..............................................................................................................9 

PUBLISH_ALV ..........................................................................................................................9 

PROCESS_FUNCTIONS........................................................................................................10 

SET_COLUMNS .....................................................................................................................11 

PROCESS_LAYOUT ..............................................................................................................11 

REGISTER_EVENTS .............................................................................................................12 

PROCESS_REPORT_HEADERS ..........................................................................................12 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 2
  

https://sdn.sap.com/irj/sdn/softwaredownload?download=/irj/servlet/prt/portal/prtroot/com.sap.km.cm.docs/business_packages/a1-8-4/ALV%20Object%20Model%20Code%20Sample.zip
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/2513


Utilizing the New ALV Object Model 

 

PROCESS_TOP_OF_LIST.....................................................................................................13 

PROCESS_TOP_OF_LIST_PRINT........................................................................................17 

Author Bio.......................................................................................................................................17 

Introduction 

When developing custom reports, it is important to have a way of creating consistent yet feature-rich 
applications. The SAP ALV functionality goes a long way towards facilitating this need. For years, our 
company has had a simple program template for creating basic reports. This template already consisted of all 
the logic necessary to create and interact with the old REUSE_ALV function modules. The use of this 
template allows developers to focus on the specific business logic for their new report without having to spend 
any time on creating the UI. This also has the effect that nearly all of our custom reports have the same look 
and feel. 

We are currently going through an upgrade from 4.6C to ECC 5.0 (Web AS 6.40). New in Web AS 6.40 is the 
ALV Object Model. The ALV OM is a more object-oriented (OO) approach to the entire suite of ALV output 
formats.  Our goal was to recreate our template program in order to take advantage of this new ALV OM. At 
the same time, we wanted to get away from the approach of copying from template. We wanted to use OO to 
create most of our logic in an ABAP objects class. This way, instead of copying the logic, individual programs 
could just reuse this existing class. If specific logic needed to be included (perhaps to handle double-click 
navigation), this could now be done via inheritance from this base template class. In this way, we can add 
new features or make fixes to all applications based on this template class with relative ease. 

Template Program 

We still have a template program that you copy from. This program now is really just a shell to call the ALV 
OM template class. This is the place where you can supply your business logic. This logic might be coded 
locally within this copied program (or better – placed in a separate class and called from here). The main 
reason for still having a classic program as the starting point is only to easily support select-
options/parameters. If there was an easy way to do this without a dialog program, we could go completely 
OO! 

This template program has some very simple logic to fill an internal table from SFLIGHT for demonstration 
purposes. 

************************************************************************ 

* Program Name: KEG Program Template for        Creation: 10/07/2005 

*               ALV Object Model 

*                                                                      * 

* SAP Name    : ZESU_REPORT_TEMPLATE_ALV_OM     Application: U         * 

*                                                                      * 

* Author      : Thomas Jung                       Type: 1              * 

*______________________________________________________________________* 

* Description :  This program is a template for the ALV Object Model   * 

*______________________________________________________________________* 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 3
  

https://sdn.sap.com/irj/sdn/softwaredownload?download=/irj/servlet/prt/portal/prtroot/com.sap.km.cm.docs/business_packages/a1-8-4/ALV%20Object%20Model%20Code%20Sample.zip
https://sdn.sap.com/irj/sdn/softwaredownload?download=/irj/servlet/prt/portal/prtroot/com.sap.km.cm.docs/business_packages/a1-8-4/ALV%20Object%20Model%20Code%20Sample.zip


Utilizing the New ALV Object Model 

 

* Inputs:                                                              * 

*                                                                      * 

* Outputs:                                                             * 

*______________________________________________________________________* 

* External Routines 

* 

*______________________________________________________________________* 

* Return Codes: 

*______________________________________________________________________* 

* Ammendments:                                                         * 

*    Programmer        Date     Req. #            Action               * 

* ================  ==========  ======  ===============================* 

*                                                                      * 

************************************************************************ 

 

report  zesu_report_template_alv_om. 

 

*----------------------------------------------------------------------* 

* TABLES                                                               * 

*----------------------------------------------------------------------* 

tables: sflight. 

 

*----------------------------------------------------------------------* 

* INTERNAL TABLES                                                      * 

*----------------------------------------------------------------------* 

data: itab type table of sflight. 

 

*----------------------------------------------------------------------* 

* CLASSES                                                              * 

*----------------------------------------------------------------------* 

data: keg_alv    type ref to zcl_es_alv_om. 

 

*----------------------------------------------------------------------* 

* SELECTION SCREEN                                                     * 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 4
  



Utilizing the New ALV Object Model 

 

*----------------------------------------------------------------------* 

selection-screen begin of block five with frame title text-017. 

parameter: variant like disvariant-variant. "ALV GRID VARIANT 

parameter: nodata1 as checkbox. "RUN ALV WITHOUT DATA 

selection-screen end of block five. 

 

*----------------------------------------------------------------------* 

* AT SELECTION SCREEN                                                  * 

*----------------------------------------------------------------------* 

**Respond to the F4 Request by the User for Help on the ALV Grid 

**Variant Selection 

at selection-screen 

  on value-request for variant. 

  keg_alv->f4_layouts( changing  c_variant = variant ). 

 

*----------------------------------------------------------------------* 

* INITIALIZATION                                                       * 

*----------------------------------------------------------------------* 

**Initialize for Selection Screen Output 

initialization. 

  create object keg_alv exporting i_repid = sy-repid. 

  keg_alv->get_default_layout( 

            changing  c_variant = variant ). 

 

*----------------------------------------------------------------------* 

* START-OF-SELECTION                                                   * 

*----------------------------------------------------------------------* 

start-of-selection. 

 

  keg_alv->auth_check( ). 

 

  if nodata1 = 'X'. 

  else. 

    select * from sflight into table itab. 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 5
  



Utilizing the New ALV Object Model 

 

*    Perform to read data and do processing 

  endif. 

 

  keg_alv->set_report_title( 'Dialog Template'(t01) ). 

  keg_alv->publish_alv( exporting i_variant = variant 

                        changing  itab      = itab ). 

Output 

In the following screen shot you can see the format of the output. It looks very much like the old Reuse ALV 
Grid. We have created a common header (the processing logic for this is in the template class) with all the 
information that we feel is import. 

 

Template Class 

The vast majority of the coding and logic resides in the template class, ZCL_ES_ALV_OM. There are several 
global attributes: 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 6
  

https://sdn.sap.com/irj/sdn/softwaredownload?download=/irj/servlet/prt/portal/prtroot/com.sap.km.cm.docs/business_packages/a1-8-4/ALV%20Object%20Model%20Code%20Sample.zip


Utilizing the New ALV Object Model 

 

 

 

The following are the methods in this class. Several of them are delivered empty (such as the event 
handlers). These can be redefined if this class is inherited to provide more specific functionality. 

 

CONSTRUCTOR 

This is the entrance point to the program. In this case, all it does is record the program name from the hosting 
program. This program name is then used during the custom authorization check and for the processing of 
the ALV variants. 

method CONSTRUCTOR. 

*Importing   I_REPID TYPE SYREPID  

  me->repid = i_repid. 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 7
  



Utilizing the New ALV Object Model 

 

endmethod. 

F4_LAYOUTS 

This is the method that is called in the at selection-screen on value-request for variant event. It will hook into 
the ALV OM to supply the F4 Value Help. 

METHOD f4_layouts. 

*Changing C_VARIANT TYPE SLIS_VARI Layout 

 

  DATA: ls_layout TYPE salv_s_layout_info, 

        ls_key    TYPE salv_s_layout_key. 

 

  ls_key-report = me->repid. 

 

  ls_layout = cl_salv_layout_service=>f4_layouts( 

    s_key    = ls_key 

    restrict = if_salv_c_layout=>restrict_none ). 

 

  c_variant = ls_layout-layout. 

ENDMETHOD. 

GET_DEFAULT_LAYOUT 

This method is called from the INITIALIZATION event of the dialog program to preload the default ALV 
variant. 

METHOD get_default_layout. 

*Changing C_VARIANT TYPE SLIS_VARI Layout 

  DATA: ls_layout TYPE salv_s_layout_info, 

          ls_key    TYPE salv_s_layout_key. 

 

  ls_key-report = me->repid. 

 

  ls_layout = cl_salv_layout_service=>get_default_layout( 

    s_key    = ls_key 

    restrict = if_salv_c_layout=>restrict_none ). 

 

  c_variant = ls_layout-layout. 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 8
  



Utilizing the New ALV Object Model 

 

ENDMETHOD. 

EVENT Handlers 

The event handler methods (ON_USER_COMMAND, ON_BEFORE_USER_COMMAND, 
ON_AFTER_USER_COMMAND, ON_DOUBLE_CLICK, ON_LINK_CLICK, ON_TOP_OF_PAGE, and 
ON_END_OF_PAGE) are all defined, but not implemented. This is where an inheriting class can provide a 
specific function such as forward navigation. For these methods to be called they must be registered in the 
method REGISTER_EVENTS. 

AUTH_CHECK 

This method is called at the very beginning of processing in the dialog program to perform our company’s 
custom authorization check. 

METHOD auth_check. 

  AUTHORITY-CHECK OBJECT 'Z_ABAP_CHK' 

             ID 'BUKRS' DUMMY 

             ID 'ACTVT' DUMMY 

             ID 'WERKS' DUMMY 

             ID 'REPID' FIELD me->repid. 

 

  IF sy-subrc NE 0. 

    MESSAGE e024(zes_job). 

  ENDIF. 

ENDMETHOD. 

SET_REPORT_TITLE 

This method can be called from the dialog program to set the title for the ALV display. 

METHOD set_report_title. 

*Importing I_TITLE TYPE CSEQUENCE 

  me->title = i_title. 

ENDMETHOD. 

PUBLISH_ALV 

This is the main method of the ALV template class. This method is called after all business logic is complete.  
The internal table with the final report results are passed into this method. From this point, all the UI 
processing and interaction with the ALV OO takes place. 

METHOD publish_alv. 

*Importing I_VARIANT  TYPE SLIS_VARI Layout 

*Changing ITAB       TYPE TABLE  

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 9
  



Utilizing the New ALV Object Model 

 

  TRY. 

      cl_salv_table=>factory( 

        EXPORTING 

          list_display = abap_false 

        IMPORTING 

          r_salv_table = alv 

        CHANGING 

          t_table      = itab ). 

    CATCH cx_salv_msg INTO alv_msg. 

      MESSAGE alv_msg TYPE 'I'. 

      EXIT. 

  ENDTRY. 

 

  me->process_functions( ). 

  me->set_columns( ). 

  me->process_layout( i_variant ). 

  me->register_events( ). 

  me->process_report_headers( ). 

 

  alv->display( ). 

 

ENDMETHOD. 

PROCESS_FUNCTIONS 

This method is called during the PUBLISH_ALV method processing. It controls which GUI functions are 
available in the ALV output screen. You can redefine this method to create custom buttons/menu options or 
remove standard ones. By default this method will activate all standard functions plus the XML export 
function. It also disables the Lotus function (since we don’t use Lotus at our company). 

METHOD process_functions. 

*... Functions 

*... activate ALV generic Functions 

*... include own functions by setting own status 

*  alv->set_screen_status( 

*    pfstatus      =  'SAPLSLVC_FULLSCREEN' 

*    report        =  'SAPLSLVC_FULLSCREEN' "me->repid 

*    set_functions = alv->c_functions_all ). 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 10
  



Utilizing the New ALV Object Model 

 

 

  DATA: lr_functions TYPE REF TO cl_salv_functions_list. 

  lr_functions = alv->get_functions( ). 

  lr_functions->set_all( abap_true ). 

  lr_functions->set_export_xml( abap_true ). 

  lr_functions->set_view_lotus( abap_false ). 

 

ENDMETHOD. 

SET_COLUMNS 

Before the introduction of the ALV OM, you would create a Field Catalog to manipulate the number of 
columns and/or the settings for these columns  Now there is an OO approach to this where you ask the ALV 
OM for a Columns Object (cl_salv_columns) and manipulate through it. The standard implementation of this 
method exposes all columns and sets the optimize width. This method can be redefined to create custom 
column processing. 

METHOD set_columns. 

*... SET the columns 

  DATA: lr_columns TYPE REF TO cl_salv_columns. 

  lr_columns = alv->get_columns( ). 

  lr_columns->set_optimize( abap_true ). 

ENDMETHOD. 

PROCESS_LAYOUT 

This method contains all the logic to process the ALV Grid Variants. It sets the current layout from a 
parameter on the dialog screen. It also sets the types of variants that can be saved (local, global, or both).  
The standard processing uses the dialog program name as the Variant key and doesn’t restrict the type of 
variant that can be saved. Once again you can redefine this method to change the default processing of the 
ALV variants. 

METHOD process_layout. 

*Importing I_VARIANT TYPE SLIS_VARI Layout 

 

*... set layout 

  DATA: lr_layout TYPE REF TO cl_salv_layout, 

        ls_key    TYPE salv_s_layout_key. 

  lr_layout = alv->get_layout( ). 

*... set the Layout Key 

  ls_key-report = me->repid. 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 11
  



Utilizing the New ALV Object Model 

 

  lr_layout->set_key( ls_key ). 

*... set usage of default Layouts 

  lr_layout->set_default( abap_true ). 

*... set Layout save restriction 

  lr_layout->set_save_restriction( if_salv_c_layout=>restrict_none ). 

*... set initial Layout 

  IF i_variant IS NOT INITIAL. 

    lr_layout->set_initial_layout( i_variant ). 

  ENDIF. 

ENDMETHOD. 

REGISTER_EVENTS  

This method is used to register any of the event handlers. By default no events are registered. However, all 
the coding is in place, but commented out. You can just redefine this method and uncomment any events that 
you want to code for. 

METHOD register_events. 

*... register to the events of cl_salv_table 

  DATA: lr_events TYPE REF TO cl_salv_events_table. 

  lr_events = alv->get_event( ). 

 

*... register to the events (Please only register those events you are 
using). 

*  SET HANDLER me->on_user_command        FOR lr_events. 

*  SET HANDLER me->on_before_user_command FOR lr_events. 

*  SET HANDLER me->on_after_user_command  FOR lr_events. 

*  SET HANDLER me->on_double_click        FOR lr_events. 

*  SET HANDLER me->on_top_of_page         FOR lr_events. 

*  SET HANDLER me->on_end_of_page         FOR lr_events. 

ENDMETHOD.  

 

PROCESS_REPORT_HEADERS  

This method is used to process the logic of the report header. You can have different output based upon 
whether the ALV is displayed or printed. For our processing we will separate these two approaches into two 
separate methods. That way they can be inherited and redefined individually if necessary. 

METHOD process_report_headers. 

  me->process_top_of_list( ). 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 12
  



Utilizing the New ALV Object Model 

 

  me->process_top_of_list_print( ). 
ENDMETHOD.  

 

PROCESS_TOP_OF_LIST  

This method has the logic to work with the ALV OM to create the report header. The ALV OM has an output 
format that is metadata based. That means that you don’t use write statements or HTML, but instead a neutral 
formatting method. The ALV OM itself will then interpret this data and produced the best output type for the 
current situation. In the processing you will see that we use GRIDs and FLOWs to control the layout, which is 
very similar to BSP or WebDynpro. 

METHOD process_top_of_list. 

 

  DATA: lr_grid   TYPE REF TO cl_salv_form_layout_grid, 

         lr_grid_1 TYPE REF TO cl_salv_form_layout_grid, 

         lr_flow   TYPE REF TO cl_salv_form_layout_flow, 

         lr_label  TYPE REF TO cl_salv_form_label, 

         lr_text   TYPE REF TO cl_salv_form_text, 

         l_text TYPE string. 

  CREATE OBJECT lr_grid. 

 

  IF me->title IS NOT INITIAL. 

    lr_grid->create_header_information( 

      row    = 1 

      column = 1 

      text    = me->title 

      tooltip = me->title ). 

  ENDIF. 

 

*... in the cell [2,1] create a grid 

  lr_grid_1 = lr_grid->create_grid( 

                row    = 2 

                column = 1 ). 

 

*... in the cell [1,1] of the second grid create a label 

  lr_text = lr_grid_1->create_text( 

    row     = 1 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 13
  



Utilizing the New ALV Object Model 

 

    column  = 1 

    colspan = 2 

    text    = 'Kimball International (Kimball Electronics Group)'(ki1) 

    tooltip = 'Kimball International (Kimball Electronics Group)'(ki1) ). 

 

  lr_flow  = lr_grid_1->create_flow( 

    row     = 2 

    column  = 1 ). 

 

  lr_label = lr_flow->create_label( 

    text    = 'Program:'(t02) 

    tooltip = 'Program: '(t02) ). 

 

  lr_text = lr_flow->create_text( 

    text    = sy-cprog 

    tooltip = sy-cprog ). 

 

  lr_flow  = lr_grid_1->create_flow( 

    row     = 3 

    column  = 1 ). 

 

  lr_label = lr_flow->create_label( 

    text    = 'System:'(t03) 

    tooltip = 'System:'(t03) ). 

 

  lr_text = lr_flow->create_text( 

    text    = sy-sysid 

    tooltip = sy-sysid ). 

 

  lr_flow  = lr_grid_1->create_flow( 

    row     = 3 

    column  = 2 ). 

 

  lr_label = lr_flow->create_label( 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 14
  



Utilizing the New ALV Object Model 

 

    text    = 'Client:'(t04) 

    tooltip = 'Client:'(t04) ). 

 

  lr_text = lr_flow->create_text( 

    text    = sy-mandt 

    tooltip = sy-mandt ). 

 

  lr_flow  = lr_grid_1->create_flow( 

     row     = 4 

     column  = 1 ). 

 

  DATA: date1(12) TYPE c. 

  DATA: time1(8) TYPE c. 

  WRITE sy-datum TO date1. 

  WRITE sy-uzeit TO time1. 

  DATA: tzonesys TYPE tznzonesys. 

  SELECT SINGLE tzonesys FROM ttzcu INTO tzonesys. 

  lr_label = lr_flow->create_label( 

    text    = 'Date:'(t05) 

    tooltip = 'Date:'(t05) ). 

 

  lr_text = lr_flow->create_text( 

    text    = date1 

    tooltip = date1 ). 

 

 

  lr_flow  = lr_grid_1->create_flow( 

     row     = 4 

     column  = 2 ). 

  lr_label = lr_flow->create_label( 

    text    = 'Time:'(t06) 

    tooltip = 'Time:'(t06) ). 

 

  lr_text = lr_flow->create_text( 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 15
  



Utilizing the New ALV Object Model 

 

    text    = time1 

    tooltip = time1 ). 

 

  lr_text = lr_flow->create_text( 

    text    = tzonesys 

    tooltip = tzonesys ). 

 

  IF sy-timlo NE sy-uzeit. 

    WRITE sy-datlo TO date1. 

    WRITE sy-timlo TO time1. 

    lr_flow  = lr_grid_1->create_flow( 

       row     = 5 

       column  = 1 ). 

    lr_label = lr_flow->create_label( 

      text    = 'Local Date:'(t07) 

      tooltip = 'Local Date:'(t07) ). 

 

    lr_text = lr_flow->create_text( 

      text    = date1 

      tooltip = date1 ). 

 

 

    lr_flow  = lr_grid_1->create_flow( 

       row     = 5 

       column  = 2 ). 

    lr_label = lr_flow->create_label( 

      text    = 'Local Time:'(t08) 

      tooltip = 'Local Time:'(t08) ). 

 

    lr_text = lr_flow->create_text( 

      text    = time1 

      tooltip = time1 ). 

 

    lr_text = lr_flow->create_text( 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 16
  



Utilizing the New ALV Object Model 

 

      text    = sy-zonlo 

      tooltip = sy-zonlo ). 

  ENDIF. 

 

  alv->set_top_of_list( lr_grid ). 

 

ENDMETHOD. 

 PROCESS_TOP_OF_LIST_PRINT  

For the purpose of our template, we want to produce the same output when printed as when displayed on-
line. Therefore the standard implementation of this method will just call over to its online counterpart.  
However thought redefinition, an individual application can create specific processing for the print version of 
the header that differs from the on-line version. 

METHOD process_top_of_list_print. 

  me->process_top_of_list( ). 

ENDMETHOD.  

 

Author Bio

 Thomas Jung is an applications developer for the Kimball Electronics Group. He has been 
involved in SAP implementations at Kimball as an ABAP developer for over 9 years. He has done work in the 
Microsoft world with VB and .NET Development, but his first love remains as always: ABAP. For several 
years, Tom has been involved in the use of BSP development at Kimball and more recently in the introduction 
of ABAP web services for critical Interfaces and WebDynpro ABAP.  He holds the Special Interest Group 
Chair position for Web Technologies within ASUG (America’s SAP User’s Group). He is also the co-author of 
the SAP PRESS Book, Advanced BSP Programming. 

© 2005 SAP AG  The SAP Developer Network: http://sdn.sap.com 17
  


	Applies To:
	Summary
	Introduction
	Template Program
	Output
	Template Class
	CONSTRUCTOR
	F4_LAYOUTS
	GET_DEFAULT_LAYOUT
	EVENT Handlers
	AUTH_CHECK
	SET_REPORT_TITLE
	PUBLISH_ALV
	PROCESS_FUNCTIONS
	SET_COLUMNS
	PROCESS_LAYOUT
	REGISTER_EVENTS



