

How-to Guide
SAP NetWeaver ‘04
SAP Enterprise Portal 6.0

How To…
Build
Dynamically
Propogated
Tree
Version 1.00 – July 2004

Applicable Releases:
SAP NetWeaver ‘04
(• NW Support Package Stack 1)

© Copyright 2004 SAP AG. All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or for any purpose without the
express permission of SAP AG. The information
contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its
distributors contain proprietary software components of
other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are
registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel
Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400,
iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent
Miner, WebSphere, Netfinity, Tivoli, and Informix are
trademarks or registered trademarks of IBM Corporation
in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered
trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,
WinFrame, VideoFrame, and MultiWin are trademarks
or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or
registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,
Inc., used under license for technology invented and
implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP
NetWeaver, and other SAP products and services
mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the
world. All other product and service names mentioned
are the trademarks of their respective companies. Data

contained in this document serves informational
purposes only. National product specifications may vary.

These materials are subject to change without notice.
These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes
only, without representation or warranty of any
kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only
warranties for SAP Group products and services are those
that are set forth in the express warranty statements
accompanying such products and services, if any.
Nothing herein should be construed as constituting an
additional warranty.

These materials are provided “as is” without a warranty
of any kind, either express or implied, including but not
limited to, the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement.
SAP shall not be liable for damages of any kind including
without limitation direct, special, indirect, or
consequential damages that may result from the use of
these materials.
SAP does not warrant the accuracy or completeness of
the information, text, graphics, links or other items
contained within these materials. SAP has no control
over the information that you may access through the
use of hot links contained in these materials and does not
endorse your use of third party web pages nor provide
any warranty whatsoever relating to third party web
pages.
SAP NetWeaver “How-to” Guides are intended to
simplify the product implementation. While specific
product features and procedures typically are explained
in a practical business context, it is not implied that those
features and procedures are the only approach in solving
a specific business problem using SAP NetWeaver. Should
you wish to receive additional information, clarification
or support, please refer to SAP Consulting.
Any software coding and/or code lines / strings (“Code”)
included in this documentation are only examples and
are not intended to be used in a productive system
environment. The Code is only intended better explain
and visualize the syntax and phrasing rules of certain
coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall
not be liable for errors or damages caused by the usage of
the Code, except if such damages were caused by SAP
intentionally or grossly negligent.

 - 1 -

1 Scenario..2

1.1 Overview..2
1.2 Overall WorkFlow ...2

2 Prerequisites ...3
3 Step-By-Step Solution ...4

3.1 Creating the pool..4
3.2 Classes description...5
3.3 Tree renderer class ...6
3.4 Calling the tree renderer class from the portal component.10

3.4.1 Sample Code ..11
4 Risks...12
5 Appendix..13

 - 2 -

1 Scenario
You are required to develop a portal component that display dynamically propogated tree
with possibility to add nodes, assign icons to the nodes (i.e. directory and file names ,
database tables and their columns , XML file hierarchy and etc.), assign client side
events . HTMLB provides basic implementation for representing hierarchical data but it is
usually don’t address most customer needs - it can’t dynamically expand and collapse
elements, assin icons to the nodes and etc.

1.1 Overview
The tree view is used to display hierarchical data or text. The hierarchy levels may be
expanded and collapsed and every leaf of the tree is loadined only once . Every tree
node contains a text and an image icon that expands and collapses the node or
represents the tree node.It is possible to assign different icon to types of the node. The
node text might also link to a function that displays the connected data. The tree view is
using HTMLB styles - the first four levels have different colors. From the 5th level on the
color stays the same like in the 4th level.
Usage of the tree renderer provides an easy way to create a tree by extending the
abstract class AbstractTreeRenderer and providing data model objects – ITree (and
ITreeNode) defined by UIService .
Tree Renderer is ideally suites to view Enterprise Business Objects such as database
tables or SAP objects as a tree, and to enable selection of object properties (like
database fields). Since loading of object children might be time consuming in these
cases, it is required to load the children on-demand.

1.2 Overall WorkFlow
The DynymicTreeService of SAP Enterprise Portal is delivered in a portal archive (PAR
file) named com.sap.portal.productivity.util.dyntree.par which contains all the Java and
JavaScript functionality for manipulationg the tree structure.
In a deployed portal, the PAR file is located at <SAPJ2EEngine-deployment-dir>
\cluster\server\services\servlet_jsp\work\jspTemp\irj\root\WEB-INF\deployment\pcd.
During initial portal deployment, it is renamed to
com.sap.portal.productivity.util.dyntree.par.bak.

Functionality of tree depends on code of the following modules:

• UIService

• DynymicTreeService

To create a tree, we recommend the following procedure:

• Create Portal Component Object which will represent dynamically loading tree.

• Create Node Object that holds the node information such as – node id, node
name, node type and etc.

• Create Class that extending AbstractTreeRenderer object and implement
abstract functions.

• Add icons images to the portal component resources representing the tree nodes.

 - 3 -

2 Prerequisites
System:
SAP Enterprise Portal 6.0 SP2 or higher
SAP J2EE Engine Version 6.2 or higher

Developer:
The developer should have knowledge in EP 6.0 Portal Administration, Eclipse
development environment with SAP Portal Plugin installed and at least medium level of
java knowledge.

 - 4 -

3 Step-By-Step Solution

3.1 Creating the pool

1. Open Eclipse development
Environment.

2. Create new Portal Application
project or edit an existing one.

3. Create new Portal Component
Object

4. Edit portalapp.xml file located in
dist\PORTAL_INF\portalapp.xml

5. Now you will have to add the
reference to the relevant services:

• com.sap.portal.ui.uiservice

• com.sap.portal.htmlb

• com.sap.portal.productivity.util.dyntree

• com.sap.portal.productivity.utils

If your component will use additional
PAR files please add them to the
list.Additional reference to
com.sap.portal.ivs.connectorservice was
added in my example because of
performing database connection.

 - 5 -

• If you want your tree to display
icons please add the images to
…/dist/PORTAL_INF/images
directory.

6. Create two classes :

1) First class will represent the tree
node. This class can be inherited from
BasicNode class (which implement
IBasicNode interface) provided in
attached example. This class has the
basic functionality such as node id,
name, type, load status.

2) Second class should be inherited
from AbstractTreeRenderer class or
AbstractTreeBuilder class provided in
attached example which provides
additional functionality for sorting the
nodes by name , adding the node to the
tree , resource initialization and etc.

3.2 Classes description
• Tree Node Class
This is a class that implements the tree node definition. Every tree node should
have the following properties:
1) Node Id – unique string which serve mostly for adding dynamically loaded
nodes, retrieving the node from the tree. The node Id returned when you would
like to know which node was clicked/doubleclicked, which node droped/dragged
and etc. Please see the ITree API from com.sapportals.portal.prt.service.ui
service.
2) Node Name – The node name displayed in the tree view.
3) Node type – The tree node can be of various types such as: folder,
document , table, field and etc.

Examples

 - 6 -

A BasicNode class supplied in attached example provides basic Node futures.
You can either create your own class for representing the node or inherit from
BasicNode provided in example and add additional functionality/properies in
case BasicNode not complitelly meet your requirements..

The following example shows the basic node class:

package
com.sap.portal.treebuilder.components.hardcodedcontent;

import com.sap.portal.treebuilder.components.BasicNode;

public class MyNode extends BasicNode {

 public MyNode(String key, String name,boolean folder) {

 setId(key);

 setIsFolder(folder);
 if ((name != null) && (name.length() > 0)) {
 mm_name = name;
 }else{
 mm_name = "EMPTY";
 }
 }
}

3.3 Tree renderer class
This is the class that doing the real work and building the tree structure. In order to
create this class you can either inherit from AbstractTreeRenderer class that belongs
to com.sap.portal.productivity.util.dyntree service or inherit from AbstractTreeBuilder class
provided in attached example.

Steps for creating the tree renderer class inherited from AbstractTreeBuilder ::

1. Create new class which inherit from AbstractTreeBuilder class:
import java.util.MissingResourceException;

import
com.sap.portal.treebuilder.components.AbstractTreeBuilder;
import com.sap.portal.treebuilder.components.IBasicNode;
import
com.sap.portals.productivity.util.dyntree.TreeRendererExcept
ion;
import
com.sapportals.portal.prt.component.IPortalComponentRequest;
import com.sapportals.portal.prt.service.ui.tree.ITree;
import com.sapportals.portal.prt.service.ui.tree.ITreeNode;

 - 7 -

public class HardCodedTreeRenderer extends
AbstractTreeBuilder {

 protected void initResources(IPortalComponentRequest
request) throws MissingResourceException {
 // TODO Auto-generated method stub
 }

 public ITree getChildren(String nodeID,
IPortalComponentRequest request)
 throws TreeRendererException {
 // TODO Auto-generated method stub
 return null;
 }

 public ITree buildTree(IPortalComponentRequest request)
throws TreeRendererException {
 // TODO Auto-generated method stub
 return null;
 }

 protected void setNodeIcons(ITreeNode
newNode,IBasicNode bObject,IPortalComponentRequest request)
{
 // TODO Auto-generated method stub
 }

2) Create constructor :

public HardCodedTreerenderer(String treeID, String root) {
 super(treeID,root);
}
treeID - tree ID
root - it can be a file system path ,XML file name , system alias or other value
which can represent the tree root or can be used to retrieve the root and its
childrens.
You can specify as more parameters as you want but you must call the super
constructor with treeId and root value. Additional parameters can be stored in
mm_dynamicLoadAttributes hashtable for further processing.

3) Add resources initialization:
Add icon declarations at the top of the class, for example :
 // show closed folder icon
 private AbstractTreeRenderer.Icon mm_iconFolderClosed;
 // show opened folder icon
 private AbstractTreeRenderer.Icon mm_iconFolderOpen;
 // show document icon
 private AbstractTreeRenderer.Icon mm_iconDocument;

 - 8 -

Implement initResources function which should initialize declared icons with
suitable image resource from images directory (you can also specify another
directory):
protected void initResources(IPortalComponentRequest
request) throws

MissingResourceException {
 mm_iconFolderOpen = new Icon(initResource(request,
IResource.IMAGE,"images/folderopen.gif"));
 mm_iconFolderClosed = new Icon(initResource(request,
IResource.IMAGE,"images/folder.gif"));
 mm_iconDocument= new Icon(initResource(request,
IResource.IMAGE,"images/object.gif"));
}

Implement setNodeIcons function which defines which icon relate to each the
node :
protected void setNodeIcons(ITreeNode newNode, IBasicNode
bObject,

IPortalComponentRequest request) {
if (bObject.isFolder()) {

newNode.setFolderOpenImage(mm_iconFolderOpen.getUrl(request)
);
 newNode.setFolderCloseImage(mm_iconFolderClosed.getUrl(
request));
} else {
 // attribute
 newNode.setDocumentImage(mm_iconDocument.getUrl(request
));
}
}

4) Implementing two most important functions : buildTree and getChildren
which defines the tree structure :

buildTree – this function creates the Root node and adds himself to the tree. You
can add the node to the tree by calling addTreeNode(parentNode, myTreeNode,
tree,request) function that placed in AbstractTreeBuilder class.
This is simple example provided from par file attached :
public ITree buildTree(IPortalComponentRequest request)
throws

TreeRendererException {
 ITree tree =
AbstractTreeRenderer.getUiService().createTree(getTreeID(),
"");
 tree.setSelectionMode(ITree.SELECTIONMODE_MULTI);

 - 9 -

 IBasicNode parentBObject = null;
 // Create the root node
 parentBObject = getNode(null);
 // Add the root to the tree.
 addTreeNode(null, parentBObject, tree, request);

 return tree;
}

getChildren - this function creates the child nodes of supplied node (according
to its Node ID) and adds the childs to the parent node.

This is simple example provided from par file attached :

public ITree getChildren(String nodeID,
IPortalComponentRequest request)throws

TreeRendererException {
 ITree tree =
AbstractTreeRenderer.getUiService().createTree(getTreeID(),
"");
 tree.setSelectionMode(ITree.SELECTIONMODE_MULTI);

 ITreeNode parentNode = null;
 IBasicNode parentBObject = null;

 IBasicNode[] allChildren = null;

 parentBObject = getNode(nodeID);
 parentNode = addTreeNode(null, parentBObject, tree,
request);

 allChildren = getChildren(parentBObject.getId());

 for (int i = 0; i < allChildren.length; i++) {
 IBasicNode bObject = allChildren[i];
 addTreeNode(parentNode, bObject, tree, request);
 }
 return tree;
}

 - 10 -

3.4 Calling the tree renderer class from the portal component.
A class that implements this type of functionality is contained in the example
attached.
Steps for calling the tree renderer:

1) Init your renderer class at the start of the doContent method , it is better for
better performance to initialize the renderer only once, for example:

renderer = new HardCodedTreerenderer(TREE_ID, inputVal);

2) Get the default root of the tree for dynamic loading of the firdt tree layer .

 String parentNodeId =
data.getAttribute(AbstractTreeRenderer.ATTRIBUTE_PARENT_NODE
_ID);

 3) Call the refreshTree function for initializing the first tree layer
treeRenderer.refreshTree(parentNodeId, request, response);

4) Create tree view component by calling the createInitialTreeHtml function :
HTMLFragment tree = new
HTMLFragment(treeRenderer.createInitialTreeHtml(req, resp));

 - 11 -

3.4.1 Sample Code
A classes that implements functionality described above is contained in the
Appendix. By using the classes provided in example the developer from some of
the complexity of getting a connection to JDBC system , perform basic operations
on the tree and creating the portal component using the tree render
implementation. Attached example contain two tree implementation :
1) Building the database structure tree: In order to run this example you need to
create JDBC System and assign it a system alias. You can also see how the
database connection established in ConnectionUtil class .
2) Building the tree from txt file which describes the tree hierarchy.

Prerequisite for running Business Object tree renderer example : JDBC System
created:

• Upload TreeBuilder par to the portal.

• You can view the tree either by creating an iView from the par or browsing to
SAP Enterprise Portal 6.0 Launcher Component and launching TreeBuilder
component .

You will see the following window :

 - 12 -

After specifying the JDBC system alias name you will see the database tree:

• To open the TreeBuilder component in Eclipse - Import the project from

PAR file and you will see the Tree Render implementation.

4 Risks
• Some versions of Netscape Navigator browsers will not support the

dynamic tree.

• Risk of connection timeout if loading the children nodes takes too long.

• Performance may be limited by performance of connectors and
performance of Connector Generic component if you component
connecting to the database or other applications.

 - 13 -

5 Appendix

PAR file contain sample programs
(TreeBuilder Portal Component)that utilize
DynamicTreeService and builds two types
of trees: JDBC tree and tree defined in txt
file

See ZIP-File

The text file describing the tree hierarchy.
The first number in the line defines the
parent node id and the second number in
the row defines its child node id.

See ZIP-File

www.sdn.sap.com/irj/sdn/howtoguides

