In this exercise you will:

- Configure Secure Network Communication for RFC based communication

Configure Secure Network Communication (SNC) and Secure Sockets Layer (SSL)

Introduction..4
Business Systems ...6
Configure SNC on the CI...7
 Download the latest sapcryptolib from service market place:7
 Set environment variables ..8
 Install SAP Cryptolib on central instance ..8
 Maintain profile parameters ..9
 Restart System ..11
 Test startup ...11
 Test sapcryptolib ..12
Delete the System PSE – not used..13
 WebAS 6.20..13
 SAP 4.6C ...13
Create the System PSE – not used..14
 WebAS 6.20..14
 SAP 46C ..15
Create the SNC PSE ...16
 WebAS 6.20..16
 SAP 4.6C or lower ...19
Generate Credentials...21
 WebAS 6.20..21
 SAP 46.C or lower only ..21
Create the Certificate Request – not used..22
 WebAS 6.20..22
 SAP 46.C ...23
Sign the SNC Certificate by a CA – not used...23
 WebAS 6.20..23
 SAP 46.C ...23
Import the SNC Certificate signed by the CA– not used23
 WebAS 6.20..23
 SAP 46.C ...24
Activate SNC ..24
Export the certificate of the partner server ..24
 WebAS 6.20..24
Configure SSL for the Integration Server .. 40
Configure SNC for the J2ee engine communication via the sap gateway 39
Configure SNC for the RFC adapter .. 38
Configure SNC on additional Dialog Server .. 36
Configure SSL for a stand-alone adapter engine with a self-signed certificate 50
Maintain the endpoints of the Business Scenarios in the Integration Directory............ 61
Maintain properties files of all adapter instances ... 61
Testing the connection for SSL Server Authentication... 42
Maintain the configuration of the adapter engines ... 59
Install the IAIK files on the local adapter engine .. 59
Activate SSL .. 42
Create SSL Client Certificate... 42
Activate SSL .. 42
Testing the connection for SSL Server Authentication... 42
Change the Pipeline settings. .. 45
TA SICF... 46
Create an Alias for HTTPs Calls of the Pipeline.. 46
Create an Alias for HTTP of the Pipeline.. 49
Configure SSL for the RFC adapter .. 38
Configure RFC Destination used by the RFC Adapter for SNC 38
Configure the RFC Destinations that send data to the RFC Adapter for SNC 38
In the property file of the RFC Adapter ... 38
Configure SNC for the J2ee engine communication via the sap gateway 39
Configure SSL for the Integration Server .. 40
Create SSL Client Certificate... 42
Activate SSL .. 42
Testing the connection for SSL Server Authentication... 42
Configure SSL for a stand-alone adapter engine with a self-signed certificate 50
Business Systems with local adapter engine... 50
Install the local adapter engine on the servers above... 50
Installing the SAP Cryptographic Library on the server of the local adapter engine .. 50
Creating a PSE for the server of the local adapter engine using SAPGENPSE... 50
without certificate request .. 51
Generate Credentials... 52
Export the certificate of the partner server .. 53
On the Integration Server .. 53
On the Adapter Engine .. 54
Import the certificate of the partner server into your SSL Server PSE 55
Integration Server .. 55
Adapter Engine ... 57
Install the IAIK files on the local adapter engine .. 59
Maintain the configuration of the adapter engines ... 59
Maintain the services .. 59
HttpServer .. 59
GUIBrowserEngine – not used ... 60
Test the local adapter engine .. 61
Maintain properties files of all adapter instances .. 61
Maintain the endpoints of the Business Scenarios in the Integration Directory.... 61

Page 2 of 66
Configure SSL for a stand-alone adapter engine with certificate from a CA.............62
Installing the SAP Cryptographic Library on the server62
Creating a PSE for the server using SAPGENPSE ...62
Creating the Server's Credentials Using SAPGENPSE62
Sign the Server Certificate ..62
Export/Import the certificates between the servers ...63
Transport ...64
Related Notes and documents ..65
 Related Notes ...65
 Related Documents ..65
Errors ...66
Other comments ..66
Introduction

In order to encrypt data sent via XI there are two ways.

- For RFC based communication over the RFC or Idoc Adapter SNC is used. The communication can be secured with a SAPRouter in addition.
- For all HTTP based communication SSL is used.

As currently all communication takes place in internal networks, no certificates from official Certificate Agencies are used for both SNC and SSL based communication.
For documentation reasons, the steps are mentioned but marked with (not used) in the heading.
Currently the document describes the procedure to set up SNC and SSL on Unix systems.
For windows systems there are slightly differences in the paths, the environment variables, and the rights for users and files. Please check the online documentation for that.

SNC:

For RFC based communication, the following types of RFC destinations can be encrypted.

SAP to SAP communication:
For the communication path between two SAP Systems when using RFC, the calling SAP System is the initiator of the communication and the SAP System defined as the RFC destination is the acceptor. Settings that are relevant for load balancing are made in the initiating system.
Internal RFC destinations:
For performance reasons, we do not recommend to use SNC for internal destinations. For incoming RFCs to internal destinations, the system does verify the entry in the SNCSYSACL table. This entry is automatically created as an internal destination (type = I) as start up, based on the information located in the profile parameters above mentioned.

ALE heavily uses internal RFC. For security reason internal RFC can be encrypted although the communication takes place on the same host.

RFC: TCP/IP connection to start an external program on an application server:
Not necessary to use SNC, because of the One-host installation of XI.

In addition the communication can be secured with a SAPROUTER.

SSL:

As currently all communication takes place in internal networks, currently no WebAS dispatcher is used in a DMZ.

Local Adapter Engines need to be installed on each Business System that requires Outbound Adapters based on the Adapter Engine.
Business Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Platform</th>
<th>Used adapters</th>
<th>SSL</th>
<th>SNC</th>
<th>Adapter Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>IET</td>
<td>HP-UX ?</td>
<td>SOAP, FILE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>eCM</td>
<td>Unix ?</td>
<td>SOAP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SB1</td>
<td>Redhat 7.20 (CI)</td>
<td>File; RFC, IDOC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SB1</td>
<td>HP-UX 11.0 (DI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XID</td>
<td>HP-UX 11.11</td>
<td>SOAP, FILE, RFC, IDOC</td>
<td>X</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>MS SQL Server</td>
<td>Windows 2000 Server SP ?</td>
<td>JDBC</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Configure SNC on the CI

We use the SAP Cryptolib for SNC. The product meets the requirements of the GSS-API V2 Interface.

Download the latest sapcryptolib from service market place:

The product must provide the entire functionality defined in the standard interface, the GSS-API V2 (Generic Security Services Application Programming Interface Version 2). SNC uses this interface to communicate with the external security product. See note 66687 for more information. We use the SAP Cryptographic Library for SNC.

On the service marketplace http://service.sap.com specify the alias download. Go to SAP Cryptographic Software → <your platform>

Important: The distribution of the SAP Cryptographic Library is subject to and controlled by German and US export regulations and can not be sent to all countries. In addition, the library may be subject to local regulations of your own country that may further restrict the import, use and (re-)export of cryptographic software.

We will use separate PSE for SNC and SSL.

<table>
<thead>
<tr>
<th>System</th>
<th>Download for SNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI2 CI: SAP Cryptographic Library Linux Intel x86 – for testing purposes only</td>
<td></td>
</tr>
<tr>
<td>XID CI: SAP Cryptographic Library HP UX 11.11</td>
<td></td>
</tr>
<tr>
<td>XIT CI: SAP Cryptographic Library HP UX 11.11</td>
<td></td>
</tr>
<tr>
<td>XIP CI: SAP Cryptographic Library HP UX 11.11</td>
<td></td>
</tr>
<tr>
<td>SB1 CI: SAP Cryptographic Library Linux Intel x86</td>
<td></td>
</tr>
<tr>
<td>DI: SAP Cryptographic Library HP UX 11.0</td>
<td></td>
</tr>
</tbody>
</table>

Unpack the CAR files to a temporary directory. In the case of Linux there are the following files:

E.g. Under Linux:

```
[sbladm@sapa91 SNC]$ CAR -xvf ../linux_snc.car
processing archive ../linux_snc.car...
  x Changelog.txt
  x LEGAL.TXT
  x LICENSE.TXT
  x Ver555.pl14
  x linux-glibc2.1.2
  x linux-glibc2.1.2/libsapcrypto.so
  x linux-glibc2.1.2/sapgenpse
```
Set environment variables

These environment variables are valid for WebAS 620 and 46C also. Check if they are already set for user <sid>adm in the profile .sapenv_<host name>.csh. If not, set the following environment variables.

DIR_EXECUTABLE = /usr/sap/<SID>/SYS/exe/run
The environment variable DIR_EXECUTABLE determines the location where the PSE is stored. This means we use the directory /usr/sap/<SID>/SYS/exe/run.

USER= <sid>adm

LD_LIBRARY_PATH = /usr/sap/<SID>/SYS/exe/run

SECUDIR = /usr/sap/<SID>/DVEBMGS<Instance Number>/sec

Install SAP Cryptolib on central instance

On every server the files need to be installed. We start with the central instance. The necessary steps on the application server are described in section Configure SNC on additional Application Server.

sapcryptolib

We use the /usr/sap/<SID>/SYS/exe/run directory to store the sapcryptolib. This is determined by the environment variable DIR_EXECUTABLE:

Copy the files libsapcrypto.sl / libsapcrypto.so and sapgenpse to the directory /SYS/exe/run. The libsapcrypto.<so/sl> has to be secured on OS level.
Only <sid>adm should be able to access the file.
Make sure that you change the authorizations to 700 1 for user <sid>adm and group sapsys.

sapgenpse

We use the /usr/sap/<SID>/SYS/exe/run directory to store the sapgenpse file.
Make sure that you change the authorizations to 700 2 for user <sid>adm and group sapsys.

ticket

Copy the ticket to the directory /usr/sap/<SID>/DVEBMGS<##>/sec/
Make sure that you change the authorizations to 700 3 for user <sid>adm and group sapsys.

1 Change to 700 as soon everything is working
2 Change to 700 as soon everything is working
3 Change to 700 as soon everything is working
Maintain profile parameters

Make a backup of all profile files on OS level.

Set the following profile parameters in transaction RZ10.
If nothing is mentioned the parameters are valid for both 46C and WebAS 6.20.

Maintain the following parameters in the Instance-profile.
Some profile parameters are show as XID (host sapxid) and SB1 (host sapp91) as an example.

<table>
<thead>
<tr>
<th>Profile parameter</th>
<th>Value</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>snc/enable</td>
<td>0 4</td>
<td>0: not enabled 1: enabled</td>
</tr>
<tr>
<td>DIR_EXECUTABLE</td>
<td>/usr/sap/<SID>/SYS/ exe/run</td>
<td></td>
</tr>
</tbody>
</table>
| sec/libsapsecu | HP-UX: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.sl
Linux: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.so
Disables SAPSECULIB, as it cannot be used for SNC |
| ssf/ssfapi_lib | HP-UX: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.sl
Linux: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.so |
| ssf/name | SAPSECULIB |
| Although the SAPSECULIB is not used, the parameter has to be defined here. |
| snc/gssapi_lib | Linux: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.so
HP-UX: /usr/sap/<SID>/SYS/ exe/run/libsapcrypto.so
<path and file name where the SAP Cryptolib is located> |
| snc/data_protectio| 3 1 4 | 1: Authentication only |

WebAS 6.20 or higher only
snc/identity/as

See list on next page:
WebAS 6.20:
Example for XID:
p:CN=XID, OU=SD MA, O=SIEMENS DEMATIC, C=US

Example for SB1:
p:CN=SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US

- The server’s SNC name is the same for the CI and the Dialogservers of the SAP System5
- Also see chapter Activities on Dialog servers

WebAS 6.20 or higher only:
sec/rsakeylength
default

1024

Use a key length of 1024 bit (only with kernel release 6.20 and higher), see note 509495.
(512 (standard), 768, 1024, 2048)

4 At that point the parameter is not activated. We activate it in the instance profile in one of the next steps.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/max</td>
<td>3</td>
<td>1: Authentication only, 2: Integrity protection, 3: Privacy protection</td>
</tr>
<tr>
<td>snc/data_protection/n/min</td>
<td>1</td>
<td>1: Authentication only, 2: Integrity protection, 3: Privacy protection</td>
</tr>
<tr>
<td>snc/data_protection/n/use</td>
<td>3</td>
<td>1: Authentication only, 2: Integrity protection, 3: Privacy protection</td>
</tr>
<tr>
<td>snc/accept_insecure_gui</td>
<td>1</td>
<td>0: Reject unprotected logons, 1: Accept unprotected logons</td>
</tr>
<tr>
<td>snc/accept_insecure_rfc</td>
<td>1</td>
<td>0: Reject unprotected RFC, 1: Accept unprotected RFC</td>
</tr>
<tr>
<td>snc/accept_insecure_r3int_rfc</td>
<td>1</td>
<td>0: Reject unprotected CPIC, 1: Accept unprotected CPIC</td>
</tr>
<tr>
<td>snc/r3int_rfc_secure</td>
<td>0</td>
<td>Protect RFC communications, 0: Internal RFCs are unprotected, 1: Internal RFCs are protected – perfsicht, ale</td>
</tr>
<tr>
<td>snc/r3int_rfc_qop</td>
<td>3</td>
<td>1: Authentication only, 2: Integrity protection, 3: Privacy protection, 8: Use the value from snc/data_protection/use, 9: Use the value from snc/data_protection/max</td>
</tr>
<tr>
<td>snc/accept_insecure_rfc_r3int_rfc</td>
<td>1</td>
<td>This parameter enables RFC connections that were started by their own R3 System with internal destinations to be allowed without SNC security. Only effective if snc/accept_insecure_rfc = 0</td>
</tr>
<tr>
<td>snc/accept_insecure_start</td>
<td>1</td>
<td>If SNC is enabled, by default (value 0) the gateway does not start any programs that communicate without SNC</td>
</tr>
<tr>
<td>snc/force_logon_screen</td>
<td>0</td>
<td>0: The logon screen is displayed only when necessary, 1: The logon screen is always displayed</td>
</tr>
<tr>
<td>gw/rem_start</td>
<td>REMOTE_SHELL</td>
<td>For Security reasons, start only programs on the computer where the gateway is located. Additionally the gateway passes the name of the external library onto the programs that it starts.</td>
</tr>
</tbody>
</table>

- Value DISABLED not used yet.
- Needs to be tested
List of all SNC names

<table>
<thead>
<tr>
<th>SID</th>
<th>Type (CI, Diag)</th>
<th>snc/identity/as</th>
<th>SID enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI2</td>
<td>CI</td>
<td>p:CN=XID, OU=SD MA, O=SIEMENS DEMATIC, C=US</td>
<td>X</td>
</tr>
<tr>
<td>XIP</td>
<td>CI</td>
<td>p:CN=XID, OU=SD MA, O=SIEMENS DEMATIC, C=US</td>
<td>X</td>
</tr>
<tr>
<td>XID</td>
<td>CI</td>
<td>p:CN=XID, OU=SD MA, O=SIEMENS DEMATIC, C=US</td>
<td>X</td>
</tr>
<tr>
<td>XIT</td>
<td>CI</td>
<td>p:CN=XIT, OU=SD MA, O=SIEMENS DEMATIC, C=US</td>
<td>X</td>
</tr>
<tr>
<td>SB1</td>
<td>CI/DI</td>
<td>p:CN=SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US</td>
<td>X</td>
</tr>
</tbody>
</table>

Restart System
Save the instance profile and restart the SAP system
stopsap r3
startsap r3

Test startup
Check in /usr/sap/<SID>/DVEBMGS##/dev_w0 if errors occur during startup.

Errors during startup:
N The internal Adapter for the loaded GSS-API mechanism identifies as:
N Internal SNC-Adapter (Rev 1.0) to SECURE 5/GSS-API v2
N *** ERROR => SncPSetNewName()==SNCERR_BAD_NT_PREFIX [sncxall.c 2271]
N SncPImportPrName() parsing error
N name="sap00.sapxi2"
N <<- SncInit()==SNCERR_BAD_NT_PREFIX

Changed:
N SncInit(): found
snc/gssapi lib=/usr/sap/XI2/SYS/exe/run/libsapcrypto.so
N File "/usr/sap/XI2/SYS/exe/run/libsapcrypto.so" dynamically loaded as
GSS-API v2 library.
N The internal Adapter for the loaded GSS-API mechanism identifies as:
N Internal SNC-Adapter (Rev 1.0) to SECURE 5/GSS-API v2
N SncInit(): found snc/identity/as=p:CN=sap00.sapxi2, OU=Test, O=MyCompany, C=DE
N *** ERROR => SncPAcquireCred()==SNCERR_GSSAPI [sncxall.c 1510]
N GSS-API(maj): No credentials were supplied
N GSS-API(min): SECURE PSEDIR directory not found: /home/xi2adm/sec
($HOME)
E)
N Couldn't acquire ACCEPTING credentials for
N
N name="p:CN=sap00.sapxi2, OU=Test, O=MyCompany, C=DE"
M *** ERROR => ErrISetSys: error info too large [err.c 945]
M Mon Oct 20 10:39:11 2003
M LOCATION SAP-Server sapxi2_XI2_00 on host sapxi2 (wp 0)

7 If you use a signed certificate, ask your certificate provider for the exact SNC name. In our case we only use self-signed certificates.
You need to deactivated SNC to create the SNC PSE.

Test sapcryptolib

It is important that the SAPCRYPTOLIB has the patch level 14 (5.5.5.C pl14)

Go to directory /usr/sap/<SID>/SYS/exe/run
You can check the patch level by calling sapgenpse on OS level.
The following result should appear:

[sbladm@sapa91 run]$./sapgenpse
Usage: sapgenpse [-h] <command> [-h] [sub-options] ...

Using default SAPCRYPTOLIB library name "libsapcrypto.so"

Platform: Linux on Intel x86 32-bit
Versions: SAPGENPSE = 1.5.5 pl17 (Dec 11 2002)
SAPCRYPTOLIB = 5.5.5.C pl14 (Dec 10 2002) MT-safe

USER="sbladm"

Environment variable $SECUDIR is defined:
The following error occurred on Linux:
```
sapxip:xipadm 22> sapgenpse
**********************************************************************
**    sapgenpse WARNING: Environment variable "USER" not defined! **
**  Please define the USER environment variable *AND* insert        **
**  the definition into the startup script of your Unix shell,      **
**  or you may get problems accessing credentials created           **
**  through 'seclogin'!                                             **
**  Examples additions for your shell startup scripts:             **
**                                                                  **
**  (sh): if [ "$USER" = "" ];then USER="$whoami";export USER;fi **
**  (csh): if ( $?USER == 0 ) setenv USER "$whoami"               **
**                                                                  **
**  You appear to have a csh-style login shell                   **
**********************************************************************
```

Usage: sapgenpse [-h] <command> [-h] [sub-options] ...

ERROR in unix_dlopen(): dlopen("libsapcrypto.sl") FAILED:
"Mmap failed due to errno: 13."

Loading of shared library "libsapcrypto.sl" failed!
You might need to define the shared library search path LD_LIBRARY_PATH

You need to do the following:

setenv USER xipadm

setenv LD_LIBRARY_PATH /usr/sap/XIP/SYS/exe/run

Why needs LD_LIBRARY_PATH to be set under Linux?

Delete the System PSE – not used

Motivation:

WebAS 6.20

Go to TA STRUST

High light System PSE
Choose in context menu Delete.

SAP 4.6C
Therefore remove the file SAPSYS.pse in directory /usr/sap/<SID>/DVEBMGS##/sec On OS level
rm SAPSYS.pse

Create the System PSE – not used

Use this functionality for enabling single-sign on the basis of logon-tickets between the systems.

WebAS 6.20

Start the trust manager with transaction STRUST.
High-light *System PSE.*
Choose *Create* in the context menu.

Use that button to deactivate the suffix. The field CA gets greyed out and the field Country can be maintain.

Make the following entries:
- Name: < SID >
- Org: SD MA
- Comp./Org.: SIEMENS DEMATIC
- Country: US

Choose *Enter.*

In directory `\usr\sap\XI2\DVEBMGS00\sec` the file `<name>.PSE` is created.

SAP 46C

Not described.

8 The difference to SNC (where the SID is used for the name) is that there a whole SAP system is addressed. With SSL always a single server is referenced.
Create the SNC PSE

WebAS 6.20

Start the trust manager with transaction STRUST.

High-light SNC (SAPCryptolib) and choose Create in the context menu.

High-light SNC PSE.
Choose Create in the context menu.

Choose Enter.

If a Pop up comes up for SNC name enter the following:

Use that button to deactivate the suffix. The field CA gets greyed out and the field Country can be maintain.

Make the following entries:
- Name: < SID >
- Org: SD MA
- Comp./Org.: SIEMENS DEMATIC
- Country: US
Choose Enter.

9 The difference to SNC (where the SID is used for the name) is that there a whole SAP system is addressed. With SSL always a single server is referenced.
Choose Enter.

The result looks like this:

Double-click on SNC (SAP Cryptolib) → Double-click on sapxid_XID_00.
Double-click on Own-certificate.
Choose to assign a password to the SNC PSE
For testing purposes we use empass

You will get the message Temporary PSE encrypted.

TEMP*.pse created: Reason?

In directory /usr/sap/<SID>/DVEBMGS###/sec the file cred_v2 is created.
In the file cred_v2 the password for the SNC PSE is stored in encrypted form. It is used for the SAP tools to log onto the SNC PSE automatically.

Make sure that **only the user under which the server runs** has access to this file (including read access).
Therefore make sure that you change the authorizations to 700 \(^{10}\) for user <sid>adm and group sapsys

SNC does not require certificates signed by a CA.
The PSE can use self-signed certificates.

Restart the SAP system

\(^{10}\) Change to 700 as soon everything is working
- stopsap r3
- startsap r3

SAP 4.6C or lower

Execute in directory `/usr/sap/SB1/exe/run` the command to create a SNC PSE using SAPGENPSE without certificate request:

```
sapgenpse get_pse <additional_options> [-p <PSE_name>] [-r <cert_req_file_name>] [-x <PIN>] [DN]
```

Standard Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td><PSE_name></td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-r</td>
<td><file_name></td>
<td>File name for the certificate request</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>stdout</td>
</tr>
<tr>
<td>-x</td>
<td><PIN></td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>DN</td>
<td>Distinguished Name for the server</td>
<td>Character string (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
</tbody>
</table>

Additional Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td><key_len></td>
<td>Key length</td>
<td>512, 1024, 2048</td>
<td>1024</td>
</tr>
<tr>
<td>-a</td>
<td><algorithm></td>
<td>Algorithm used</td>
<td>RSA, DSA</td>
<td>RSA</td>
</tr>
<tr>
<td>-noeq</td>
<td>None</td>
<td>Only generate a key pair and PSE. Do not generate a certificate request.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>Option</td>
<td>Value</td>
<td>Description</td>
<td>Applicable</td>
<td>Set</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>-onlyreq</td>
<td>None</td>
<td>Generate a certificate request for the public key stored in the PSE specified by the -p parameter.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>

The SNC Distinguished Name consists of the following elements:

- CN = <SID>
- OU = SD MA
- 0= SIEMENS DEMATIC
- C = US

The **Distinguished Name** is for example for SB1:

`p: CN=SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US`

The result is the following.

```bash
[sbladm@sapa91 run]# pwd
/usr/sap/SB1/DVEBMGS00/sec/
[sbladm@sapa91 run]# more dwh
sapgenpse get_pse -s 1024 -a RSA -p /usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.pse
-noreq -x empass "CN=SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US"
[sbladm@sapa91 run]# ./dwh
[sbladm@sapa91 run]# cdD
[sbladm@sapa91 DVEBMGS00]# cd sec
[sbladm@sapa91 sec]# ll
```

In directory `/usr/sap/SB1/DVEBMGS00/sec/` the PSE `SB1SNCS.pse` is created.

Restart the SAP system.

- stopsap r3
- startsap r3

Check in `/usr/sap/<SID>/DVEBMGS<Instance number>/work` the file `dev_w0` for errors.
Generate Credentials

WebAS 6.20

This step is not necessary as it is automatically done by STRUST.

The credentials are stored in file \textit{cred_v2}.

SAP 46.C or lower only

\texttt{sapgenpse seclogin <additional_options> [-p <PSE_name>] [-x <PIN>] [-O [<NT_Domain>\]<user_ID>]}\hfill

Standard Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-p)</td>
<td>(<\text{PSE_name}>)</td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>(-x)</td>
<td>(<\text{PIN}>)</td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
<tr>
<td>(-O)</td>
<td>[(<\text{NT_Domain}>)]<user_ID></td>
<td>User for which the credentials are created. (The user that runs the server's processes.)</td>
<td>Valid operating system user</td>
<td>The current user</td>
</tr>
</tbody>
</table>

Additional Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-l)</td>
<td>None</td>
<td>List all available credentials for the current user.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>(-d)</td>
<td>None</td>
<td>Delete PSE</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>(-chpin)</td>
<td>None</td>
<td>Specifies that you want to change the PIN</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>

Creating Credentials for the Server
The following command line opens the application server's PSE (<SID> = SB1) that is located at /usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.pse and creates credentials for the user <sid>adm = sb1adm. The PIN that protects the PSE is empass.

```
sapgenpse seclogin -p /usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.pse -x empass -O sb2adm
```

The PSE is self-signed by sapgenpse. The file *cred_v2* is used to store the credentials and stored in directory /usr/sap/<SID>/DVEBMGS<Instance number>/sec.

Restart the SAP system
- stopsap r3
- startsap r3

Create the Certificate Request – not used

WebAS 6.20

The following steps are for documentation only.

Choose ![Certificate Request](image)

Choose ![Certificate Request](image) to save the certificate request as local file.
Save it in the form <file name>.p10 if required.

As an alternative you can save it to the clipboard.

SAP 46.C

Not described here.

Sign the SNC Certificate by a CA – not used

WebAS 6.20

For testing purposes we use the SAP Certificate Infrastructure.

Go to the service marketplace http://service.sap.com. Choose the Alias CTS.
If the alias is not working try https://websmp105.sap-ag.de/SSLTest

Choose SSL Server Test Certificates.
Save the response to a file.
As an alternative you can copy it to your clipboard.

SAP 46.C

Not described here.

Import the SNC Certificate signed by the CA– not used

WebAS 6.20
Paste in the response of the CA.
Choose the Green back button.

Save the data.

SAP 46.C

Not described here.

Activate SNC

In transaction RZ10:
Set the following parameter in the instance profile of the central instance.

snc/enable = 1.

Restart the SAP system.
- stopsap r3
- startsap r3

Check the trace files that are written during startup, especially dev_w0 in the directory /usr/sap/<SID>/DVEBMGS##/work.

Export the certificate of the partner server

WebAS 6.20

In transaction STRUST high-light the SNC PSE.
Choose Export Certificate

Save the certificate on the file system.

SAP 4.6C

Exporting the Application Server's Public-Key Certificate

```
sapgenpse export_own_cert -o <output_file> -p <PSE_name> [-x <PIN>]
```

Standard Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o</td>
<td><output_file></td>
<td>Exports the certificate to the named file</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>stdout</td>
</tr>
<tr>
<td>-p</td>
<td><PSE_name></td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-x</td>
<td><PIN></td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
</tbody>
</table>
The following command line exports the application server’s public-key certificate (<SID> = SB1) to the file `/usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.crt`

```
sapgenpse export_own_cert -o /usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.crt -p /usr/sap/XI2/DVEBMGS00/sec/SB1SNCS.pse -x empass
```

Import the certificate of the partner server into your SNC PSE

WebAS 6.20

The certificates (public key) of all servers with which the server communicates have to be imported into the PSE.

In this case we will import the public key with a file.
In TA STRUST → Double-click on the SNC entry → Double-click on “Own Cerf”

Choose *import Certificate* to import the certificate’s public key of all business Systems that use SNC.
Now choose Add to Certificate List.

The result is:

```
SAP 4.6C

Use the tool's command `maintain_pk` to maintain the server's certificate list.

```
sapgenpse maintain_pk [<-a <cert_file>] [<-d <number>] [-p <PSE_name>] [-x <PIN>]
```

Standard Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Parameter</td>
<td>Description</td>
<td>Allowed Values</td>
<td>Default</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>-a</td>
<td>&lt;cert_file&gt;</td>
<td>Add certificate from file <code>&lt;cert_file&gt;</code> to the certificate list.</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-d</td>
<td>&lt;number&gt;</td>
<td>Delete certificate number <code>&lt;number&gt;</code> from certificate list.</td>
<td>Numerical value</td>
<td>None</td>
</tr>
<tr>
<td>-p</td>
<td>&lt;PSE_name&gt;</td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-x</td>
<td>&lt;PIN&gt;</td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
</tbody>
</table>

**Additional Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-cacert</td>
<td>None</td>
<td>The certificate to import is a CA root certificate.</td>
<td>Not applicable</td>
<td>None</td>
</tr>
<tr>
<td>-l</td>
<td>None</td>
<td>List existing certificate list</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>

```bash
sapgenpse maintain_pk -a /usr/sap/XI2/DVEBMGS00/sec/SB1SNCS.crt -p /usr/sap/XI2/DVEBMGS00/sec/SB1SNCS.pse
```
Setup or change the RFC destination

Use transaction SM59 to maintain the RFC destinations and their SNC options.

Before you can maintain the SNC information, the RFC destination must be defined and SNC activated on the application server.

When maintaining the SNC options specify the following information as defined in the instance profile of the application where the connection points to.

Naming convention in our case: <SID Target System>CLNT<Client>_SNC

Web AS 620

Select the SNC Active indicator

Choose Destination → SNC Options.

The Change View “SNC extension: Details” screen appears.

![Screenshot of the Change View SNC Extension: Details](image)

Enter the Quality of protection in the QoP field. Set $QoP = 8$.

This means the highest common security level of both systems is used.

Unless the destination is an external program that starts on the frontend workstation, enter the SNC name of the communication partner in the SNC names group.

To find out the SNC name of the communication partner:

In the partner System:

TA RZ10: Enter the value of profile parameter snc/identify/as
Save the data.
Maintain SNC Access Control List

Enter the communication partner in the SNC Access Control List.

Call transaction SNC0:

Enter the System ID of the communication Partner, in this case SB1.
(change: communication partner now XID)

Enter the SNC name of the communication Partner.
- In order to find out the SNC name of the communication partner use transaction RZ10 in the partner system:
  Enter as SNC name the value of profile parameter snc/identify/as

Explanation of the options above:
- Entry for RFC activated: always checked in our case
- Entry for CPIC activated: always checked in our case
- Entry for DIAG activated: If you use the webgui service
- Entry for certificates activated: If users log on with X.509 client certificates
- Entry for external ID: If users log on using an external identity, for example, when using Pluggable Authentication Services

Go to Transaction SM30.
Choose the view VSNCSYSACL.
There you can maintain table **SNCSYSACL**.  
Also see note 201417.

Choose *Maintain*.

Select E.

Here you can see entry you just created.  
Go back.

Select I.

*Display View "SNC: Access Control List (ACL) for Systems": Overview*

The internal entry is generated automatically.  
If you change the PSE you might have to delete this entry and re-create it manually.

Other information: Instead of the ACL list a trust relationship between the two systems can be established.

**Activities in the communication partner system**

Repeat all steps of chapter Configure SNC for the ABAP Stack on the CI in the partner system.
Test the RFC destination.

Choose in transaction SM59 the SNC-enabled RFC destination.

If you have a communication user maintained in the RFC destination
Choose System Information --> Target System.

The result is:

![Screen Shot](https://example.com/screenshot1.png)

If you have a dialog user in the RFC destination
Choose Remote Logon.

You must get the following screen without entering username and password:

![Screen Shot](https://example.com/screenshot2.png)

For the activities on the partner system
- Do the same steps in the partner system as described above.

Check SNC Names

Execute Report RSSNCCCHK in both systems.
Correct the errors, e.g. replace initial password
Be careful when you maintain XI system user, as the passwords have to be changed in several places!
Configure SNC on additional Dialog Server

The following steps have to be repeated in the following sequence on each dialog server.

*Download the latest sapcryptolib from service market place*

Install the sapcryptolib and sapgenpse for the relevant operating system as described above.

*Set environment variables*

Set the environment parameters as described above.

*Copy SAPSNCS.pse / <SID>SNCS.pse*

Copy only the file SAPSNCS.PSE from the exe/run directory of the CI to the exe/run Directory of the dialog server

You could also reference one central SNC PSE for both Central Instance and dialog servers. This central SNC PSE needs to be accessible by all application servers via NFS. This is not used in our case due to security reasons.

*Maintain Profile Parameters*

Maintain the profile parameters as described above.

*Generate credentials*

Generate the credentials for user <sid>adm with sapgenpse on each dialog server with the tool sapgenpse as described above. Keep in mind that you use the paths for the dialog server.

In our example, it is:

```
 sapgenpse seclogin -p D:/usr/sap/SB1/A00/sec/SB1SNCS.pse -x abcpin -O sb1adm.
```

This creates the file cred_v2 in the directory /usr/sap/<SID>/A00/sec of the application server.

Restart the dialog server.

-   stopsap r3
-   startsap r3
**Activate SNC**

Activate SNC in the instance profile of the dialog server for which you are configuring SNC right new.

Restart the sap system of the dialog server.
- stopsap r3
- startsap r3

Important: Check dev_w0 if the start up was successful.
If the startup was not successful analyse the SNC errors in order to solve the problem.

**Maintain the Access Control List (ACL)**

Maintain the Access Control List as described above.

Create an entry for each **application server** from other SAP Systems that needs RFC access to this SAP System.
As we use the SID as part of the SNC name, we only need one entry here.

Not used in our case:
If you have multiple application servers in a remote SAP System that use different credentials (different SNC names), you need to make an entry for each application server in table SNCSYSAACL.
Configure SNC for the RFC adapter

Configure RFC Destination used by the RFC Adapter for SNC

Name: AI_RFCADAPTER_JCOSERVER
As described above.

Configure the RFC Destinations that send data to the RFC Adapter for SNC
As described above.

In the property file of the RFC Adapter

Make for the following entries for each SAP sender System.
Thereby you specify the RFC adapter the SNC names as defined in snc/identity/as or in the SNC PSE and the patch to the SNC PSE.

RfcAdapter.SB1.sncName=p:CN=SB1,OU=SD MA, O=SIEMENS DEMATIC, C=US
RfcAdapter.SB1.sncLib=/usr/sap/SB1/DVEBMGS00/sec/SB1SNCS.pse
RfcAdapter.SB1.sncQop=8
RfcAdapter.SB1.sncAcl=*  
  #RfcAdapter.SB1.sncAcl=peerB6A peerB6Q  
  #RfcAdapter.SB1.sncAcl.peerB6A=p:CN=B6A, O=SAP-AG, C=DE  
  #RfcAdapter.SB1.sncAcl.peerB6Q=p:CN=B6Q, O=SAP-AG, C=DE
Configure SNC for the J2ee engine communication via the sap gateway

If the J2ee part of the WebAS 6.20 communications with the ABAP part of the WebAS 6.20 and visa versa the communication takes place over the SAP gateway.

Within XI this functionality can be used to secure the communication of user SAPJSF that is used for the communication between the XI components.

Currently we do not encrypt these connections because we have a one host installation of XI.
Configure SSL for the Integration Server

In this section we will enabling SSL on the ICM.

Add the following profile parameters in additional to the profile parameters already maintained for SNC:

<table>
<thead>
<tr>
<th>Profile parameter</th>
<th>Value</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl/ssl_lib</td>
<td>Linux: /usr/sap/XI2/SYS/exe/run/libsapcrypto.so HP-UX ssl/ssl_lib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/usr/sap/XI2/SYS/exe/run/libsapcrypto.sl</td>
<td></td>
</tr>
<tr>
<td>icm/plugin_&lt;xx&gt;</td>
<td>&lt;blank&gt;</td>
<td>&lt;xx&gt; is the number of the ICM plug-in. By default 0 is used for HTTP, and 1 for HTTPS 11</td>
</tr>
<tr>
<td></td>
<td>Not used any more 11</td>
<td></td>
</tr>
<tr>
<td>icm/server_port_0</td>
<td>PROT=HTTP,PORT=8000,EXTBIND=1</td>
<td>Sets the HTTP Port</td>
</tr>
<tr>
<td>icm/server_port_1</td>
<td>PROT=HTTPS,PORT=8443,EXTBIND=1</td>
<td>Sets the HTTPS Port</td>
</tr>
<tr>
<td>icm/server_port_2</td>
<td>PROT=SMTP,PORT=0</td>
<td>Sets the SMTP Port</td>
</tr>
<tr>
<td>sec/rsakeylength</td>
<td>default 1024</td>
<td>Use a key length of 1024 bit (only with kernel release 6.20 and higher), see note 509495. (512 (standard), 768, 1024, 2048)</td>
</tr>
<tr>
<td>icm/HTTPS/verify_client</td>
<td>1</td>
<td>0/1 (Default) / 2. If you want to suppress/allow/force the user logon by client certificate in the SSL log.</td>
</tr>
</tbody>
</table>

**Trust Manager**

High-light SSL Server.
Choose Create in the context menu.

11 Still necessary? Not in note 510007 any more
Use that button to deactivate the suffix. The field CA gets greyed out and the field Country can be maintain.

Make the following entries:

- Name: <here you have to define the fully qualified domain name of the Server
- Org: SD MA
- Comp./Org.: SIEMENS DEMATIC
- Country: US

Choose Enter.

The result is:

Choose Enter.

Choose Save.

12 The difference to SNC (where the SID is used for the name) is, that there a whole SAP system is addressed. With SSL always a single server is referenced.
Create SSL Client Certificate

The PSE is used in the SSL log if the Web AS issues a HTTPS request as client. For technical reasons, there must always be a SSL client PSE even if the system does not issue any client requests. The reason is that the SSL implementation cannot be started if the PSE is missing.

When creating it specify the following name:

Name: <SID> SSL client default

Use that button to deactivate the suffix. The field CA gets grayed out and the field Country can be maintain.

Make the following entries:

Choose Enter.

Choose Save.

Activate SSL

Restart the ICM in order to activate the SSL.

In TA SMICM → Administration → ICM → Exit Hard.

Testing the connection for SSL Server Authentication

Prepare the Internet Explorer properties.
In the menu choose Extras → Internet Options → Advanced.
Disable Show friendly HTTP error messages
Disable Show friendly URLs

Choose OK.

TA SICF
Activate service it00.

Choose Activate Service in the context menu.

Choose Yes.
Call the service with the following link:
https://sapxid.rapistan.com:8443/sap/bc/bsp/sap/it00/default.htm

Choose Yes

Specify your SAP User name and password and press OK.

The result is the following:
Calling the page from Offenbach returns the following.

<BODY>

This might be due to the proxy settings.

**Change the Pipeline settings in the SLD.**

**Pipeline is called from an adapter engine**

No changes need to be made so far in the pipeline settings. The pipeline settings in the SLD are not required because the link to the pipeline is maintained directly in the adapter property files (see below).

**Pipeline is called with a PROXY**

If you want to force the use of SSL set the parameter IS_URL in the TA SXMB_ADM to the following value.


→ Needs to be tested

As an alternative, you can change the pipeline settings in the SLD content maintenance

http://<host>:<HTTPport>/sap/xi/engine/?type=entry

*Creating two parameters IS_URL is not possible: Creating a new HTTP Server Port with Name Pipeline_Integration_Server_BS_XI2_CLNT100 was not possible:*
CIM_ERR_ALREADY_EXISTS: Instance already exists:
SAP_HTTPServicePort.CreationClassName="SAP_HTTPServicePort",Name="Pipeline_Integration_Server_BS_XI2_CLNT100",SystemCreationClassName="SAP_BCMessageServer",SystemName="XI2.HostName.sapxi2.MessagePort.3600"

**TA SICF**

Make changes in the service of the Pipeline service in order to use SSL.

In our case: Do not make direct changes to the service /default_host/sap/xi:

![Image of the service configuration screen]

**Create an Alias for HTTPs Calls of the Pipeline**

The use of this Alias in the Adapter Configuration Files is for all adapters that go to production later on mandatory.
Choose *External aliases*

High-light *default_host*

Choose Create.

Name: `/xi/engine/ssl`

Enter a documentation

Check SSL

Go to tab *Trg Element*
Double click on engine
Choose Save.

Choose Save.

Test the SSL Alias:

On XID use the following link:
https://sapxid:8443/xi/engine/ssl?type=entry

The following result should appear:

SAP Integration Engine

Empty header and empty payloads received.

This means that the XI pipeline on XID was called successfully via https and encrypted with SSL.
Create an Alias for HTTP of the Pipeline

Use calls to the Pipeline. Only use this alias for testing purposes.

Test the HTTP Alias:

On XID use the following link:
http://sapxid:8000/xi/engine/http?type=entry

The following result should appear:

SAP Integration Engine

Empty header and empty payloads received.

This means that the XI pipeline on XID was called successfully via http.
Configure SSL for a stand-alone adapter engine with a self-signed certificate

Business Systems with local adapter engine

On the following Business Systems a local adapter Engine is installed:

<table>
<thead>
<tr>
<th>System</th>
<th>Operating System</th>
<th>Address local adapter engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>IET</td>
<td>Unix (HP-UX?) - Dialog server</td>
<td><a href="http://rdcsb1:8200">http://rdcsb1:8200</a></td>
</tr>
<tr>
<td>MS SQL Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Currently we do not use a certificate signed by a Certification Authority (CA). Organizational procedures

Install the local adapter engine on the servers above.

See Adapter Engine documentation.
You find the documentation for example on the central adapter engine:


Set environment variables

In our example we use the environment variables that were already configured for SNC. For detailed information see Chapter SNC - Set environment variables.

If you install the adapter engine on a non-SAP System you have to adjust the parameters in this steps according to your needs.

Installing the SAP Cryptographic Library on the server of the local adapter engine

In our example we generate a PSE for an adapter engine on a SAP system, Therefore we use the settings that already exist for SNC. For detailed information see Chapter SNC - Install SAP Cryptolib on central instance.

If you install the adapter engine on a non-SAP System you have to adjust the parameters in this and the following steps according to your needs.
Creating a PSE for the server of the local adapter engine using SAPGENPSE without certificate request

Execute in directory /usr/sap/<SID>/exe/run the command to create a SNC PSE using SAPGENPSE without certificate request:

```
sapgenpse get_pse <additional_options> [-p <PSE_name>] [-r <cert_req_file_name>] [-x <PIN>] [DN]
```

### Standard Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>&lt;PSE_name&gt;</td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-r</td>
<td>&lt;file_name&gt;</td>
<td>File name for the certificate request</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>stdout</td>
</tr>
<tr>
<td>-x</td>
<td>&lt;PIN&gt;</td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>DN</td>
<td>Distinguished Name for the server</td>
<td>Character string (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
</tbody>
</table>

### Additional Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>&lt;key_len&gt;</td>
<td>Key length</td>
<td>512, 1024, 2048</td>
<td>1024</td>
</tr>
<tr>
<td>-a</td>
<td>&lt;algorithm&gt;</td>
<td>Algorithm used</td>
<td>RSA, DSA</td>
<td>RSA</td>
</tr>
<tr>
<td>-noreq</td>
<td>None</td>
<td>Only generate a key pair and PSE. Do not generate a certificate request.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>-onlyreq</td>
<td>None</td>
<td>Generate a certificate request for the public key stored in the PSE specified by the <code>-p</code> parameter.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>
The SSL Distinguished Name for the adapter engine consists of the following elements:
- **CN = ADAPTERENG_<SID>**
- **OU = SD MA**
- **O= SIEMENS DEMATIC**
- **C = US**

The Distinguished Name for the local adapter engine for example on SB1 is:
- p: CN=ADAPTERENG_SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US

```
sapgenpse get_pse -s 1024 -a RSA -p /usr/sap/SB1/DVEBMGS00/sec/ADAPTERENG_SB1.pse -noreq -x empass "CN=ADAPTERENG_SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US"
```

The result is the following.

In directory /usr/sap/SB1/DVEBMGS00/sec/ the PSE ADAPTERENG_SB1.pse is created.

**Generate Credentials**

```
sapgenpse seclogin <additional_options> [-p <PSE_name>] [-x <PIN>] [-O [<NT_Domain>\]<user_ID>]
```

**Standard Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>&lt;PSE_name&gt;</td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-x</td>
<td>&lt;PIN&gt;</td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
<tr>
<td>-O</td>
<td>[&lt;NT_Domain&gt;]&lt;user_ID&gt;</td>
<td>User for which the credentials are created. (The user that runs the server's processes.)</td>
<td>Valid operating system user</td>
<td>The current user</td>
</tr>
</tbody>
</table>
### Additional Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l</td>
<td>None</td>
<td>List all available credentials for the current user.</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>-d</td>
<td>None</td>
<td>Delete PSE</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
<tr>
<td>-chpin</td>
<td>None</td>
<td>Specifies that you want to change the PIN</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>

### Creating Credentials for the Server

The following command line opens the adapter engine’s PSE (ADAPTERENG_<SID>) that is located at /usr/sap/SB1/DVEBMGS00/sec/ADAPTERENG_SB1.pse and creates credentials for the user <sid>adm = sb1adm. The PIN that protects the PSE is empass.

```
sapgenpse seclogin -p /usr/sap/SB1/DVEBMGS00/sec/ADAPTERENG_SB1.pse -x empass -O sb1a
```

The PSE is self-signed by sapgenpse. The file created is adaptengxi2.crt.

The file cred_v2 is used to store the credentials and stored in directory /usr/sap/<SID>/DVEBMGS<Instance number>/sec.

Restart the SAP system

-   stopsap r3
-   startsap r3

### Export the certificate of the partner server

### On the Integration Server

On the integration server, go to transaction STRUST double-click on SSL Server. Double-click on the entry in Own Certif.
Choose Export Certificate

Save the certificate on the file system.

**On the Adapter Engine**

**Exporting the Integration Server's Public-Key Certificate**

Export the public key certificate of the adapter engine with the following command:
The following command line opens the adapter engine’s PSE that is located at
/usr/sap/SB1/DVEBMGSO0/sec/ADAPTERENG_SB1.pse and creates credentials for the user
&lt;sid&gt;adm = sb1adm. The PIN that protects the PSE is empass.
The certificate is thereby stored in the file
/usr/sap/SB1/DVEBMGSO0/sec/ADAPTERENG_SB1.pse

```
sapgenpse export_own_cert -o /usr/sap/SB1/DVEBMGSO0/sec/ADAPTERENG_SB1.crt
 -p /usr/sap/SB1/DVEBMGSO0/sec/ADAPTERENG_SB1.pse -x empass
```

**Import the certificate of the partner server into your SSL Server PSE**

**Integration Server**

The certificates (public key) of the adapter engines that communicate with the Integration
Server XID have to be imported into the PSE of Integration Server.

**Import the public key with a file**

In TA STRUST → Choose SSL Server → Double-click on sapxi2_XI2_00.
Double-click on the entry on *Own Certif.*
Choose *import Certificate* to import the certificate’s public key of all adapter engines that use SSL. Browse to the exported certificate of the adapter engine.

Choose ‘Base64’ for the import:
Now in the ‘Trust Manager’ choose *Add to Certificate List*.

The result is:

**Trust Manager**

### Adapter Engine

The certificate (public key) of the Integration Server engines that communicate with adapter engines has to be imported into the PSE of the adapter engines.

Use the tool's command `maintain_pk` to maintain the server's certificate list.

```
sapgenpse maintain_pk [additional options] [-a <cert_file>] [-d <number>] -p <PSE_name> [-x <PIN>]
```

**Standard Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>&lt;cert_file&gt;</td>
<td>Add certificate from file</td>
<td>Path description (in quotation marks, if needed)</td>
<td>None</td>
</tr>
<tr>
<td>Option</td>
<td>Parameter</td>
<td>Description</td>
<td>Allowed Values</td>
<td>Default</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>-d</td>
<td>&lt;number&gt;</td>
<td>Delete certificate number &lt;number&gt; from certificate list.</td>
<td>Numerical value</td>
<td>None</td>
</tr>
<tr>
<td>-p</td>
<td>&lt;PSE_name&gt;</td>
<td>Path and file name for the server's PSE</td>
<td>Path description (in quotation marks, if spaces exist)</td>
<td>None</td>
</tr>
<tr>
<td>-x</td>
<td>&lt;PIN&gt;</td>
<td>PIN that protects the PSE</td>
<td>Character string</td>
<td>None</td>
</tr>
</tbody>
</table>

**Additional Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-cacert</td>
<td>None</td>
<td>The certificate to import is a CA root certificate.</td>
<td>Not applicable</td>
<td>None</td>
</tr>
<tr>
<td>-l</td>
<td>None</td>
<td>List existing certificate list</td>
<td>Not applicable</td>
<td>Not set</td>
</tr>
</tbody>
</table>

```
sapgenpse maintain_pk -a /usr/sap/SB1/DVEBMGS00/sec/XIDSSLS.crt -p /usr/sap/SB1/DVEBMGS00/sec/ADAPTERENG_SB1.pse -x empass
```
Install the IAIK files on the local adapter engine

If the adapters are to communicate using HTTPS, additional libraries to implement the SSL protocol are required.
Download the Java libraries iaik_jce.jar and iaik_ssl.jar from the SAP Service Marketplace (http://service.sap.com).

Use the alias download.
Choose SAP Cryptographic Software, but ensure that you follow the regulations outlined there.
Select JAVA CryptoToolkit (your release).

You must copy both libraries to the Java CLASSPATH after installation.
In our case we copy iaik_jce.jar and iaik_ssl.jar them to the tech_adapter directory of the local adapter engine.

Now you have to add these jar files in run_adapter.sh and run_adapter.cmd.

If the local adapter engine should use HTTPS protocol to communicate with XI, you must configure the HTTP server correspondingly for the adapters. This is achieved using the HttpServer service.

If the browser is to be connected to the Adapter Engine configuration screen using HTTPS protocol, you must configure the GuiBrowserEngine service correspondingly.
We currently do not use this option.

Maintain the configuration of the adapter engines

Maintain the services

This is the service for replacing the password tokens in the adapter configurations. If required, you can change the beginning and end characters of the tokens centrally here.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value used</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWD.beginSeparator</td>
<td>&lt;%!</td>
<td>PWD.beginSeparator can be any character string. Existing replacements of tokens in the adapter configurations must then be adjusted correspondingly.</td>
</tr>
<tr>
<td>PWD.endSeparator</td>
<td>%!&gt;</td>
<td>PWD.endSeparator can be any character string. Existing replacements of tokens in the adapter configurations must then be adjusted correspondingly.</td>
</tr>
</tbody>
</table>

HttpServer

The HTTP server is used by the outbound adapters. You have the option of making the
following settings during the configuration of the HTTP server:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value used</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>http.authentication</td>
<td>basic</td>
<td>Define whether user-authentication is performed. In the <strong>basic</strong> setting, the HTTP client of the Integration Server must log on to the Adapter Engine with a valid user that has been assigned the role HTTP Server User. In the setting <strong>none</strong>, no authentication takes place. The default is <strong>none</strong>. This can be used for testing purposes only. **Values: none</td>
</tr>
<tr>
<td>HTTP.transmission</td>
<td>SSL</td>
<td>Defines whether the Integration Server and the HTTP server of the Adapter Engine are to communicate using HTTP (plain) or HTTPS (SSL). The default is <strong>plain</strong>. We use SSL instead. **Values: plain</td>
</tr>
<tr>
<td>HTTP.SSLcertificate</td>
<td>&lt;SSL distinguished name defined above&gt;</td>
<td>SSLcertificate specifies the complete file name of a password-protected certificate</td>
</tr>
<tr>
<td>HTTP.SSLcertificatePassword</td>
<td>&lt;Password for the SSL PSE &gt;</td>
<td>SSLcertificatePassword specifies the corresponding password (the password can be protected by using the token concept, described above). To make the installation HTTPS-enabled you must install additional Java libraries that are available from the SAP Service Marketplace (<a href="http://service.sap.com">http://service.sap.com</a>). These IAIK libraries must be located in the Java CLASSPATH.</td>
</tr>
</tbody>
</table>

**GUIBrowserEngine – not used**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value used</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>&lt;portNo</td>
<td>The GUI browser engine represents a separate HTTP server with a configurable port. This is the HTTP port that the browser can log on to. The default value is 8200 and must not be changed unless it has already been reserved</td>
</tr>
<tr>
<td>zones</td>
<td>root</td>
<td>Must not be changed under any circumstance!</td>
</tr>
<tr>
<td>rootDirectory</td>
<td>Administration</td>
<td>Must not be changed under any circumstance!</td>
</tr>
<tr>
<td>HTTP.transmission</td>
<td>plain</td>
<td>Defines whether the browser and the Adapter Engine are to communicate using HTTP (plain) or HTTPS (SSL). **Values: plain</td>
</tr>
<tr>
<td>SSLcertificate</td>
<td>&lt;p12-</td>
<td>SSLcertificate specifies the complete file</td>
</tr>
<tr>
<td>certificate name</td>
<td>name of a password-protected certificate.</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>SSLCertificatePassword</td>
<td>&lt;p12-certificate password&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSLCertificatePassword specifies the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>corresponding password (the password can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be protected by using the token concept,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>described above).</td>
<td></td>
</tr>
</tbody>
</table>

**Test the local adapter engine**

Once settings are applied, restart the local Adapter Engine.

Check in the adapter engine log files for errors.

**Maintain properties files of all adapter instances**

Change the call of the Pipeline in all adapter configuration files to
XMB.TargetURL=https://<fully qualified domain name of XI host>:8443/xienginessl

In the productive all data has to be encrypted using SSL.

**Maintain the endpoints of the Business Scenarios in the Integration Directory**

Find out which of the endpoints use an adapter of the local adapter engine.

Change the protocol from HTTP to HTTPS.

Now test all business scenario that have an endpoint on that local adapter engine.
Configure SSL for a stand-alone adapter engine with certificate from a CA

Currently we do not use certificates for the stand-alone adapter engine.

Installing the SAP Cryptographic Library on the server

Creating a PSE for the server using SAPGENPSE

Execute in exe/run the command:

```
sapgenpse get_pse <additional_options> [-p <PSE_name>] [-r <cert_req_file_name>] [-x <PIN>] [DN]
sapgenpse get_pse -s 1024 -a RSA -p /usr/sap/XI2/DVEBMGS00/sec/ADAPTERENG_SB1.pse -r /usr/sap/XI2/DVEBMGS00/sec/ADAPTERENG_SB1req -x empass "CN=ADPTERENG_SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US"
```

Creating the Server's Credentials Using SAPGENPSE

Execute in the directory exe/run the command:

```
sapgenpse seclogin <additional_options> [-p <PSE_name>] [-x <PIN>] [-O [\]<user_ID>]
sapgenpse seclogin -p /usr/sap/XI2/DVEBMGS00/sec/ADAPTERENG_SB1.pse -x empass -O xi2adm
```

The following result appears:

```
running seclogin with USER="xi2adm"
 creating credentials for yourself (USER="xi2adm")...
 Added SSO-credentials for PSE
"/usr/sap/XI2/DVEBMGS00/sec/ADAPTERENG_SB1.pse"
 "CN=ADPTERENG_SB1, OU=SD MA, O=SIEMENS DEMATIC, C=US"
```

You can see on operating system level that cred_v2 was changed.

Sign the Server Certificate

Sign the certificate request ADAPTERENG_SB1req by your certificate provider.

As a type I specified other WebServer.

Name the file with the ending .crt.
In this example it is

```
--- BEGIN CERTIFICATE -----
MIIC2TCCBmSieAwIBAgIUG5Xfz5U5U9wF3iKsrsdR5WYMf/A8wDQYJKoZIh
-----END CERTIFICATE-----
```

**Import the certificate into the PSE**

```
sapgenpse seclogin additional_options> [-p <PSE_name>] [-x <PIN>]
[-O [<NT_Domain>]\]<user_ID>
```

In this example:
```
sapgenpse seclogin -p -p /usr/sap/XI2/DVEBMGS00/sec/ADAPTERENG_SB1.pse -x
-O xi2adm
```

**Export/Import the certificates between the servers**

See above.
Transport

Nothing of this configuration is transported. It has to be maintained in each system.
Related Notes and documents

**Related Notes**

578377  
install the newest version of SAPSECULIB

354819  
use SAPCRYPTOLIB instead of SAPSECULIB

397175  
use SAPCRYPTOLIB instead of SAPSECULIB

509495  
Setting up SSL on the Web Application Server

5100

**Related Documents**

Service Marketplace  
Documents can be found on the service market place under service.sap.com  
Alias Security → Security in Detail → Secure System Management

Using the SAP Cryptographic Library for SNC  
SNC User Guide

Using the SAP Cryptographic Library for SNC  
SAP Web Application Server Security  
Configuring the Use of SSL on the SAP J2ee Engine

Documents can be found on the service market place under service.sap.com  
Alias xi → Media Libary

XI Security Guide

XI Configuration Guide

**Online Help**

Help.sap.com  
→ Netweaver → WebAS 6.20 SP25  
→ Security  
  → Using the SAP Cryptographic Library for SNC  
  → Configuring SNC for Using the SAPCRYTOLIB Using SAPGENPSE

**Other XI Documentation**

Adapter Engine Documentation  
You find the adapter engine documentation on the XI server in the directory /usr/sap/<SID>/SYS/global/tech_adapter/Administration/Documentation.
Errors

Test sm59: XI2:
Error occurred when calling remote function. SNC n
Message no. SR000

Test sm59: XIP
SNCERR_INVALID_FRAME A received frame is invalid/t
Message no. SR000

Solution:
- The error only occurs in Unicode Systems.
- Kernel Patch 1300 or higher.
- See Note 695205

Other comments

SNC:
- beide System einspielen
- Problem falls glib anders als bei entpackten files
- Applicationsserver: eigenes Zertifikat
- Profil parameter
- Sapcryptolib: <sid>adm
- Funktion ticket

SSL:
- Client Certificate
- 32 Bit also?
- DIR_EXECUTABLE to store PSE
- Sapcryptolib: <sid>adm
- Funktion ticket
- SECUDIR to the sec sub-directory

Report RSPFPAR
- Values of all profile parameters in START, DEFAULT, INSTANCE profile

Report TU02
- Values of all profile parameters of all servers in the system