How to Optimize and Encrypt Your Xl| Java Mappings

Applies to:

SAP NetWeaver Exchange Infrastructure (SP16)
SAP NetWeaver Application Server Java development (SP16)

Summary

This article describes the process of optimizing and encrypting SAP Xl Java mappings. The process is based
on a technique called "obfuscation." This consists of removing unused code and replacing Java classes,
methods, and attributes with encrypted names. The code becomes harder to reverse-engineer, but the
functionalities are unaffected by the changes.

Java obfuscation can be used for two main purposes:

1. To protect your intellectual property and hide critical business transformations from reverse-
engineering.

2. To optimize and reduce the size of your code.

This article presents a step-by-step guide to obfuscate your SAP XI Java mapping and provides useful tools
and resources.

Author(s): Lionel BIENNIER and Nicolas ADELINE
Company: TeamWork Management SA (Geneva - Switzerland)

Created on: 25 April 2006

WSAP DEVELOPER NETWORK © 2006 SAPAG 1

Authors Bio

Lionel is a SAP Xl Architect / Consultant. He is in charge of SAP Xl and New
Technologies’ team at TeamWork Management SA. His focus is to design and deliver
innovative and efficient business process integration solutions. He is trained in Solution
Manager. He is certified in SAP Exchange Infrastructure, SAP Sales and Distribution
and SAP ABAP.

Nicolas is a SAP consultant at TeamWork Management SA. He is trained and experienced
in SAP XI development and configuration. He concentrates on advanced SAP Xl Java
developments. He also has experience with WebDynPro and J2EE application
development.

Table of Contents

How to Optimize and Encrypt Your Xl Java MappingS........cceueaaiiiurieiieaaeeeaiiiiieee e e e e e seisieeeeeae e e 1
Y o] o 1 =23 (o PP 1
SUIMIMIAIY .1ttt ettt e o4 oottt e o444 ek R bttt et e e ookttt e e e e e e bbb e et e e e e e e e e e e e s 1
AULNOTS BIO ..ttt e et e et e et 2
I 1] (o) @0 1 (=Y o[£ PP TPR 2
Why ObfuSCate YOUr JAVA COUB?eeiiiiiii ittt ettt e e e e e ettt e e e e e e e s nbnbeeeaaaeeaanns 3
L ST (T 0 [T =P 3
Overview of the ODfUSCAtION PrOCESScoiiiiiiiiiiiii e 3
Installing the Sample Xl Java Mappingccooviiiiiiiiiiieeeee e 4
Obscuring the SAP XI JAVA MaPPINGveeieiiiiiee ittt et e e et e e e s srbe e e e e snbaeee e 9
Comparing Java Code Before and After ObfUSCAtioNcc.uuviiiiiiiiiiii e 11
(©70] o3 1013 o] o PSPPSR 13
Disclaimer and Liability NOUCEcoiuiiiiiiiii e 14

WSAP DEVELOPER NETWORK © 2006 SAP AG 2

Why Obfuscate Your Java Code?
You might want to obfuscate your SAP XI Java programs in order to:
« Hide critical business logic and transformations,
« Protect your source code against reverse-engineering,
« Prevent unauthorized patches and modifications,
« Optimize and shrink the size of your Java code,

« Increase security by encrypting log on, authorization code sections.

Prerequisites
The following tools are required:

« A Java obfuscator tool. A list of available tools is given in the section “Obscuring the SAP XI Java
mapping.”

e SAP NetWeaver Developer Studio
Overview of the Obfuscation Process
The obfuscation process consists in translating explicit names and syntax into meaningless names.

A basic example will illustrate this: if your source code contains a method named “getValue” it can be
encrypted into “e1zT3Dw%?2" or "z" or “3ert” or any other alphanumerical string. The logic and functionalities
of the method “getValue” are unaltered but the name of the method is no longer human-readable.

The diagram below shows the process of reverse-engineering a Java compiled code. On the left track
without obfuscation the reverse-engineering is successful. On the right track the code cannot be reverse-
engineered.

WSAP DEVELOPER NETWORK © 2006 SAP AG 3

Nscator

MyObject. GetValue
Obfuscated Code Becomes
q2E804e4T1.23t4R8g5

Compiler

Compiled Code Compiled Code Binary format

Decompiler

Decompiled Code

Decompiled Code

l

The code is fully
readable

MyObject. GetValue q2E804e4T1.23t4R8g5

The code is obscure

and not human
readable

Installing the Sample XI Java Mapping
We developed a sample Java mapping program to showcase the obfuscation technique in SAP XI.

The Java mapping program initializes two values (initFirstValue and initSecondValue) and performs four
calculations (addTwoValues, divideTwoValues, multiplyTwoValues, substractTwoValues). The result of each
operation is displayed in the SAP XI processing log window.

[W Processing Log x|

12:05:33 Start of test
Compilation ofMessage_In_2_Message_Out successful

» 'Blnput parameters 20, 20
* ©result adaition - 40

» 'Blnput parameters 20, 20
® B rcsuttsubstract: 0

» 'Blnput parameters 20, 20
* ©resut multiply - 400

» 'Blnput parameters 20, 20
* D result divide : 1

Executed successiully
12:05:56 End oftest

WSAP DEVELOPER NETWORK © 2006 SAP AG 4

To get started with the sample program you need to start the SAP Netweaver Developer Studio, then create

the packageExample and copy the source code of SampleCalculation and OperatorClass in two separate
classes.

package packageExample;

import com.sap.aii.mapping.api.-MappingTrace;

import com.sap.aii.mappingtool _tf3_rt._Container;

public class SampleCalculation {
public SampleCalculation (O {
}
public void calculationLogic(Container c) {
MappingTrace trace;

trace = c.getTrace();

int result;

try {
//Create an instance of OperatorClass
OperatorClass myOperator = new OperatorClass();
//1nit the values for the operation
int firstValue = myOperator.initFirstValue();

int secondvValue = myOperator.initFirstvValue();

//Log the input parameters into the trace

trace.addInfo(myOperator . _writelnputParameters(firstValue,secondValue));
//Addition

result = myOperator.addTwoValue(FfirstValue,secondValue);
//Log the result into the trace

trace.addInfo(myOperator.writeResult(OperatorClass.addition,
result));

//Log the input parameters into the trace

trace.addInfo(myOperator.writelnputParameters(firstValue,secondValue));
//Substraction

result = myOperator.subtractTwoValue(FfirstValue,secondValue);
//Log the result into the trace

trace.addInfo(myOperator.writeResult(OperatorClass.subtract,
result));

WSAP DEVELOPER NETWORK © 2006 SAPAG 5

//Log the input parameters into the trace

trace.addInfo(myOperator . .writelnputParameters(firstValue,secondValue));
//Multiply
result = myOperator_multiplyTwoValue(FfirstValue,secondValue);
//Log the result into the trace

trace.addInfo(myOperator.writeResult(OperatorClass.multiply,
result));

//Log the input parameters into the trace

trace.addInfo(myOperator . .writelnputParameters(firstValue,secondValue));
//Division
result = myOperator.divideTwoValue(FirstValue,secondvValue);
//Log the result into the trace

trace.addInfo(myOperator . _writeResult(OperatorClass.divide,
result));

} catch (Exception e) {
e.printStackTrace();

package packageExample;

public class OperatorClass {

static String addition = "addition™;

static String subtract "'substract™;

static String multiply "multiply";

static String divide = "divide";

public OperatorClass () {

b
//1nit the first value

WSAP DEVELOPER NETWORK © 2006 SAP AG 6

public int initFirstValue() {
return 20;
}
//1nit the Second value
public int initSecondvalue() {
return 15;
}
//Addition between two values
public int addTwoValue (int valuel, int value2) {
int result=0;
result = valuel + value2;
return result;
}
//Subtraction between two values
public int subtractTwoValue (int valuel, int value2) {
int result=0;
result = valuel - value2;
return result;
}
//Multiplication between two values
public int multiplyTwoValue (int valuel, int value2) {
int result=0;
result = valuel * value2;
return result;
}
//Division between two values
public int divideTwoValue(int valuel, int value2) {
int result=0;
result = valuel / value2;
return result;
}
//Returns the string result for the logging
public String writeResult(String operator, int result) {
return "Result " + operator + " : " + result;
}
//Returns the string input parameters for the logging
public String writelnputParameters(int FfirstvValue, int secondvValue) {

return "Input parameters : " + firstvalue + " , + secondvValue ;

}

WSAP DEVELOPER NETWORK © 2006 SAP AG 7

The procedure below describes the steps to export the Java mapping (packageExample) from SAP
Netweaver Developer Studio and import it into SAP XI.

Export the Java source
COde from SAP File Edit Source Refactor MNavigate Search Project Rum Window Help

Netweaver Developer In-gEas|cE| @]y |d-%-%-||S8dpe-|e 2| .
Studio as a jar file. =]

: | W4 v x
I@ 1@ com. twm.replacecharacters

1= com.twm.x12.orders. 850
f?‘; ConnectxIServer
%5 Orders_850_%12ToXml_01
+ E‘J ReplaceCharacters_01
= ﬁ‘J Weblog-JavaObfuscation
+- {3 Data.In
H Data.Cut
= export_obj0
export_obj0
& export_obj1
2 export_obj1
H# packageExar Open Diagram
8 packageExar Open in Mew Window

8 packageExar Open Type Hierarchy
3 packageExar

bd packageE e alls
Operatol o,
; % SampleC —
packagel @ Paste
-y JRE System | # Delete
[]--ﬁ}), aii_map_api.,
=-(iy, aii_mt_rt.jar
£

Select on Diagram

Select on Diagram

Mew »
Go Into

Source »
Refactor »
]--ﬁ}), _webdynpro
--[1] _webdynpro £2g Import...

--[32] aii_map_api.))

ail_mt_rt.jar m Repository Managers Generation

..... £ build.xml [BY Service, Filter and Scheduler Task Generation
2] exportjar Export...

--[i] export_obj.j

EEE! Guick BAR pload
Ems)
References P
Dedarations b ription | Resource
Hedared package does not matc.., ajava
{;§3 Refresh Hedared package does not matc... b.java
Create SAP Xl archive 4 % Edit Imported Archive
and import the jar file. Marme JavaPragram
Mamespace hitpcharan tov-rm chi
Software Component¥ersion | TWSCO02_LIBRARY_MAPPING, 1.0 of tw-m.ch
Description
Archive Program
EEEEIE
Mame

Path
packageExample
npackageExample

CperatorClass.class
ObfuscationClass.class

WSAP DEVELOPER NETWORK © 2006 SAP AG 8

Create a message
mapping.

Ttee Qccurrences Type Details Desctip |Tree Qccurrences Type
< [@lMessage_In 1.1 pl:OTO03_hasi.. = [@]Message_Out 1.1 pl:OTO03_hasi..
= [@]DATA 1.1 = [@]DATA 1.1
[elROwW 0.unbounded ¥sd:string []ROw 0.unhounded ¥sd:string
LDl [[
-
i
i

UserDeﬂne..H—H ROW |

[0 Functions:User-Defined & [UserDefinedFunctian|=

Create a user defined
function.

Description:
Impaorts packageExample?_save ™

E2

|puhlic String UserDefinedFunction{Container cantainer)§

SampleCaleulation mySampleCalculation = new SampleCalculation(;
mySampleCalculation.calculationLogic{cantainer),

return "test’;

Go to the test tab and
execute the mapping.

[N Processing Log Xl

12:05:33 Start of test
Compilation of Message_In_2_Message_Out successiul

- @Input parameters : 20, 20

* B Result addition - 40

- @Input parameters ;20 20

* O recutt substract: 0

- @Input parameters ;20 20

® Erecuit muttiply: 400

- @Input parameters ;20 20

® Erecut divide : 1

Executed successiully
12:05:56 End oftest

Obscuring the SAP Xl Java Mapping

Numerous commercial and freeware obfuscator tools are available on the market, including:

Proguard

Retrologic

WSAP DEVELOPER NETWORK © 2006 SAP AG 9

IBM AlphaWorks (JAX),

PreEmptive (DashOPro),

Zelix (KlassMaster),

S5 Systems (iPresto).

We will use a freeware called Proguard. The tool is easy to use and it has a graphical user interface.

The procedure below describes the two steps required to obfuscate the Java mapping file.

Add the Java mapping jar B
. t ource and |ve ProGuard Program jars, wars, ears, zips, and directories
as input s g — C:Mvor 9-JavaOl ionProjectio0 Jar \\ Addinput.. |
the name Of the Output C:MVorkspacs 0-Javaol 'ProjectObfuscate.jar P
Shrinking
Edit...
Obfuscation Filter...
Optimization Remove
Add the SAP Xl logging Inforrmation Move up
aii_mt_rt.jar for the Java Process Meve down
|Ibral’y jarS ReTrace Move to libraries
Library jars, wars, ears, zips, and directories
C:\Program FileswJavaljre1.5.0_04librt.jar
C:WorkspaceWWeblog-JavaObfuscation'ail_map_api.jar st
Filter...
Remove
Move up
Move down
Move to program
Check the options Options
Obfuscate, Optimize and i
press Execute. o
[] Allow access modification
Remove
System method calls withowt side effects
Math method calls without side effects
Humber method calls without side effects
String method calls without side effects
Options StringBuffer method calls without side effects
Obfuscate StringBuilder method calls without side effects
The Java mapping file is obfuscated and it can be imported into SAP XI:
WSAP DEVELOPER NETWORK © 2006 SAP AG 10

http://www.alphaworks.ibm.com/
http://www.preemptive.com/
http://www.zelix.com/
http://www.s5systems.com/

Open the previously
created SAP Xl archive
and import the
obfuscated jar file.

£ % Edit Imported Archive

Mame JavaPragram

Mamespace ity :ihwnasne toi-rm chi

Software ComponentYersion TWSC002_LIBRARY_MAPPING, 1.0 of tw-rm.ch

Description

Archive Program

EENEEIE

Mame Fath
h.class packageExample
a.class packageExample
Modify the user defined Description:
function to match the Imports packageExample2_save.,
obfuscated class name i)
and method.
|puhlic String UserDefinedFunction(Container container)§
hb=new b

h.hicontainer);

return "test",

When you go to the test tab and run the mapping again the behavior is unchanged and the processing log

window shows the same results.

Comparing Java Code Before and After Obfuscation

Class Diagrams

The UML class diagram of the source code before and after obfuscation shows the transformation operated

on classes, methods and attributes names. Names were replaced by a single letter.

UML Class Diagram

before obfuscation

after obfuscation

WSAP DEVELOPER NETWORK

UML Class Diagram

© 2006 SAP AG 11

O OperatorClass e o _waccesss | © SampleCalculation % a &b
5 T . wimports
& addition: String PR pores - S o
== === N &7 a: String
#° divide: String - [sinstantiates o Salmpllett.:aliula.tlun(,- 5 b St & b()
) : Strin
25 multiply: String e —— g) g
8 subtract: String ﬂs ¢: String
&7 d: String
& OperatorClass()
@ addTwovalue() Os ar)
@ divideTwoValue() & af)
@ initFirstvalus() & ap
@ intSecondValuel) OS b()
@ multiplyTwoValue() CIS i)
L]
@ =subtraciTwoValue() .
) . & do
i@ writelnputParameters() Os .
@ writeResult() &0}

Before and After Comparison

The table below highlights the main changes in the source. The class, methods and attributes names are
replaced by a letter. The developer comments are removed (see line 7). Unused class, methods or attributes
are also removed.

Before obfuscation After obfuscation
1 | public class SampleCalculation { public final class b {
2 | public void calculationLogic(Container c) private static void a(Container container)
3 | intfirstValue = myOperator.initFirstValue(); int j = packageExample3.a.a();
4 | result= int | = packageExample3.a.a(j, k);

myOperator.addTwoValue(firstValue,secondValue);

5 | trace.addInfo(myOperator.writeResult(OperatorClass | abstracttrace.addInfo(packageExample3.a.a(a.

.addition, result)); a, i),
6 | static String addition = "addition"; static String a = "addition";
7 | //Addition between two values public static int a(int i, int j) {

public int addTwoValue (int valuel, int value2) {

WSAP DEVELOPER NETWORK © 2006 SAP AG 12

Optimization

The obfuscation process will optimize the Java code by reducing the source code size. The reduction
percentage depends on the Java code itself: number of classes, instances and methods, length of classes,
instances and methods, number and length of comments, number of unused methods. To give some
empirical figures, the Java code of a complex Java mapping program can be reduced by 30 to 40%.

We also observed a positive effect on run time performances. The execution time of optimized/obfuscated
Java transformations was faster by 10 to 20%.

Advanced Obfuscation

You can tailor the behavior of the obfuscation tool to match your specific needs. For example, we increased
the level of encryption by removing the optimization option and customizing the obfuscation dictionary. The
result is shown below.

UML Class Diagram after obfuscation

Gb &a
o8 aAASDAFksGGDdhG14fEkGrelnesaitilbwem: String d: C
al}

&8 dvid fglid fgldJFGH} flgd 4545jv fvdbnvbnkgd: String @5 A ASDAFkeGEDIdhG 4fi5kErelinesitily .
Pl dWigdIfFkgd4fF gutrHGJFGHIFe2o8vMnmFvB8E5: String 2 ® . i —

28 fFd gjzdGkHHfdgmeMnvekd M55 fgES=id4kgvbvbn: String

& aAASDAFksGGDjdhG14fBkGreUnesitilbwem()
@& aAASDAFksG GDjdhG14fi5kGrelneSaitilbwemi)
@ aAASDAFksGEDjdhG14fBkGrelneshitilbwem()
& b0

o ddfglidfgldFGHIfigd4545jyfudbnyvbnkgd()

& dWgdIfFkgd4fFquirHGJFGHFe206vAnmFVEES(}
@S fFdgjed GkHH fdgmcMnvekd M55 fgES=ld4kgvbvbn(}
OS fFdgjed GkHH fdgmchM nvekd M58 fgES=ld4kgvbvbn()
ClS =ReperejrgSéeireds fmged f3456gsDFFdfgeSd()

Conclusion

This article presented the obfuscation process and highlighted the main features such as encryption and
optimization. The insertion of obfuscation into the existing SAP XI development processes is another
challenge. It requires appropriate thinking, preparation and management. Another learning of this article is
that proven technologies in the Java environment can be easily transferred and reused in SAP XI Exchange
Infrastructure.

WSAP DEVELOPER NETWORK © 2006 SAP AG 13

Disclaimer and Liability Notice

This document may discuss sample coding or other information that does not include SAP official interfaces
and therefore is not supported by SAP. Changes made based on this information are not supported and can
be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods
suggested in this document, and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of
this technical article or code sample, including any liability resulting from incompatibility between the content
within this document and the materials and services offered by SAP. You agree that you will not hold, or
seek to hold, SAP responsible or liable with respect to the content of this document.

WSAP DEVELOPER NETWORK © 2006 SAP AG 14

	Applies to:
	Summary
	Authors Bio
	Table of Contents
	Why Obfuscate Your Java Code?
	Prerequisites
	Overview of the Obfuscation Process
	Installing the Sample XI Java Mapping
	Obscuring the SAP XI Java Mapping
	Comparing Java Code Before and After Obfuscation
	Class Diagrams
	Before and After Comparison
	Optimization
	Advanced Obfuscation

	Conclusion
	Disclaimer and Liability Notice

