
SDN Contribution

© 2006 SAP AG 1

How to Optimize and Encrypt Your XI Java Mappings
Applies to:

SAP NetWeaver Exchange Infrastructure (SP16)
SAP NetWeaver Application Server Java development (SP16)

Summary

This article describes the process of optimizing and encrypting SAP XI Java mappings. The process is based
on a technique called "obfuscation." This consists of removing unused code and replacing Java classes,
methods, and attributes with encrypted names. The code becomes harder to reverse-engineer, but the
functionalities are unaffected by the changes.

Java obfuscation can be used for two main purposes:

1. To protect your intellectual property and hide critical business transformations from reverse-
engineering.

2. To optimize and reduce the size of your code.

This article presents a step-by-step guide to obfuscate your SAP XI Java mapping and provides useful tools
and resources.

Author(s): Lionel BIENNIER and Nicolas ADELINE

Company: TeamWork Management SA (Geneva - Switzerland)

Created on: 25 April 2006

Authors Bio

Lionel is a SAP XI Architect / Consultant. He is in charge of SAP XI and New
Technologies’ team at TeamWork Management SA. His focus is to design and deliver
innovative and efficient business process integration solutions. He is trained in Solution
Manager. He is certified in SAP Exchange Infrastructure, SAP Sales and Distribution
and SAP ABAP.

Nicolas is a SAP consultant at TeamWork Management SA. He is trained and experienced
in SAP XI development and configuration. He concentrates on advanced SAP XI Java
developments. He also has experience with WebDynPro and J2EE application
development.

Table of Contents

How to Optimize and Encrypt Your XI Java Mappings.. 1

Applies to: .. 1

Summary.. 1

Authors Bio .. 2

Table of Contents .. 2

Why Obfuscate Your Java Code? ... 3

Prerequisites.. 3

Overview of the Obfuscation Process ... 3

Installing the Sample XI Java Mapping ... 4

Obscuring the SAP XI Java Mapping .. 9

Comparing Java Code Before and After Obfuscation ... 11

Conclusion ... 13

Disclaimer and Liability Notice... 14

© 2006 SAP AG 2

Why Obfuscate Your Java Code?

You might want to obfuscate your SAP XI Java programs in order to:

• Hide critical business logic and transformations,

• Protect your source code against reverse-engineering,

• Prevent unauthorized patches and modifications,

• Optimize and shrink the size of your Java code,

• Increase security by encrypting log on, authorization code sections.

Prerequisites

 The following tools are required:

• A Java obfuscator tool. A list of available tools is given in the section “Obscuring the SAP XI Java
mapping.”

• SAP NetWeaver Developer Studio

Overview of the Obfuscation Process

The obfuscation process consists in translating explicit names and syntax into meaningless names.

A basic example will illustrate this: if your source code contains a method named “getValue” it can be
encrypted into “e1zT3Dw%2” or ”z” or “3ert” or any other alphanumerical string. The logic and functionalities
of the method “getValue” are unaltered but the name of the method is no longer human-readable.

The diagram below shows the process of reverse-engineering a Java compiled code. On the left track
without obfuscation the reverse-engineering is successful. On the right track the code cannot be reverse-
engineered.

© 2006 SAP AG 3

Installing the Sample XI Java Mapping

We developed a sample Java mapping program to showcase the obfuscation technique in SAP XI.

The Java mapping program initializes two values (initFirstValue and initSecondValue) and performs four
calculations (addTwoValues, divideTwoValues, multiplyTwoValues, substractTwoValues). The result of each
operation is displayed in the SAP XI processing log window.

© 2006 SAP AG 4

To get started with the sample program you need to start the SAP Netweaver Developer Studio, then create
the packageExample and copy the source code of SampleCalculation and OperatorClass in two separate
classes.

package packageExample;

import com.sap.aii.mapping.api.MappingTrace;

import com.sap.aii.mappingtool.tf3.rt.Container;

public class SampleCalculation {

 public SampleCalculation () {

 }

 public void calculationLogic(Container c) {

 MappingTrace trace;

 trace = c.getTrace();

 int result;

 try {

 //Create an instance of OperatorClass

 OperatorClass myOperator = new OperatorClass();

 //Init the values for the operation

 int firstValue = myOperator.initFirstValue();

 int secondValue = myOperator.initFirstValue();

 //Log the input parameters into the trace

trace.addInfo(myOperator.writeInputParameters(firstValue,secondValue));

 //Addition

 result = myOperator.addTwoValue(firstValue,secondValue);

 //Log the result into the trace

 trace.addInfo(myOperator.writeResult(OperatorClass.addition,
result));

 //Log the input parameters into the trace

trace.addInfo(myOperator.writeInputParameters(firstValue,secondValue));

 //Substraction

 result = myOperator.subtractTwoValue(firstValue,secondValue);

 //Log the result into the trace

 trace.addInfo(myOperator.writeResult(OperatorClass.subtract,
result));

© 2006 SAP AG 5

 //Log the input parameters into the trace

trace.addInfo(myOperator.writeInputParameters(firstValue,secondValue));

 //Multiply

 result = myOperator.multiplyTwoValue(firstValue,secondValue);

 //Log the result into the trace

 trace.addInfo(myOperator.writeResult(OperatorClass.multiply,
result));

 //Log the input parameters into the trace

trace.addInfo(myOperator.writeInputParameters(firstValue,secondValue));

 //Division

 result = myOperator.divideTwoValue(firstValue,secondValue);

 //Log the result into the trace

 trace.addInfo(myOperator.writeResult(OperatorClass.divide,
result));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package packageExample;

public class OperatorClass {

 static String addition = "addition";

 static String subtract = "substract";

 static String multiply = "multiply";

 static String divide = "divide";

 public OperatorClass () {

 }

 //Init the first value

© 2006 SAP AG 6

 public int initFirstValue() {

 return 20;

 }

 //Init the Second value

 public int initSecondValue() {

 return 15;

 }

 //Addition between two values

 public int addTwoValue (int value1, int value2) {

 int result=0;

 result = value1 + value2;

 return result;

 }

 //Subtraction between two values

 public int subtractTwoValue (int value1, int value2) {

 int result=0;

 result = value1 - value2;

 return result;

 }

 //Multiplication between two values

 public int multiplyTwoValue (int value1, int value2) {

 int result=0;

 result = value1 * value2;

 return result;

 }

 //Division between two values

 public int divideTwoValue(int value1, int value2) {

 int result=0;

 result = value1 / value2;

 return result;

 }

 //Returns the string result for the logging

 public String writeResult(String operator, int result) {

 return "Result " + operator + " : " + result;

 }

 //Returns the string input parameters for the logging

 public String writeInputParameters(int firstValue, int secondValue) {

 return "Input parameters : " + firstValue + " , " + secondValue ;

 }

© 2006 SAP AG 7

}

The procedure below describes the steps to export the Java mapping (packageExample) from SAP
Netweaver Developer Studio and import it into SAP XI.

Export the Java source
code from SAP
Netweaver Developer
Studio as a jar file.

Create SAP XI archive
and import the jar file.

© 2006 SAP AG 8

Create a message
mapping.

Create a user defined
function.

Go to the test tab and
execute the mapping.

Obscuring the SAP XI Java Mapping

Numerous commercial and freeware obfuscator tools are available on the market, including:

Proguard

Retrologic

© 2006 SAP AG 9

IBM AlphaWorks (JAX),

PreEmptive (DashOPro),

Zelix (KlassMaster),

S5 Systems (iPresto).

We will use a freeware called Proguard. The tool is easy to use and it has a graphical user interface.

The procedure below describes the two steps required to obfuscate the Java mapping file.

Add the Java mapping jar
as input source and give
the name of the output.

Add the SAP XI logging
aii_mt_rt.jar for the Java
library jars.

Check the options
Obfuscate, Optimize and
press Execute.

The Java mapping file is obfuscated and it can be imported into SAP XI:

© 2006 SAP AG 10

http://www.alphaworks.ibm.com/
http://www.preemptive.com/
http://www.zelix.com/
http://www.s5systems.com/

Open the previously
created SAP XI archive
and import the
obfuscated jar file.

Modify the user defined
function to match the
obfuscated class name
and method.

When you go to the test tab and run the mapping again the behavior is unchanged and the processing log
window shows the same results.

Comparing Java Code Before and After Obfuscation

Class Diagrams

The UML class diagram of the source code before and after obfuscation shows the transformation operated
on classes, methods and attributes names. Names were replaced by a single letter.

UML Class Diagram

before obfuscation

UML Class Diagram

after obfuscation

© 2006 SAP AG 11

Before and After Comparison

The table below highlights the main changes in the source. The class, methods and attributes names are
replaced by a letter. The developer comments are removed (see line 7). Unused class, methods or attributes
are also removed.

 Before obfuscation After obfuscation

1 public class SampleCalculation { public final class b {

2 public void calculationLogic(Container c) private static void a(Container container)

3 int firstValue = myOperator.initFirstValue(); int j = packageExample3.a.a();

4 result =
myOperator.addTwoValue(firstValue,secondValue);

int I = packageExample3.a.a(j, k);

5 trace.addInfo(myOperator.writeResult(OperatorClass
.addition, result));

abstracttrace.addInfo(packageExample3.a.a(a.
a, i));

6 static String addition = "addition"; static String a = "addition";

7 //Addition between two values

public int addTwoValue (int value1, int value2) {

public static int a(int i, int j) {

© 2006 SAP AG 12

Optimization

The obfuscation process will optimize the Java code by reducing the source code size. The reduction
percentage depends on the Java code itself: number of classes, instances and methods, length of classes,
instances and methods, number and length of comments, number of unused methods. To give some
empirical figures, the Java code of a complex Java mapping program can be reduced by 30 to 40%.

We also observed a positive effect on run time performances. The execution time of optimized/obfuscated
Java transformations was faster by 10 to 20%.

Advanced Obfuscation

You can tailor the behavior of the obfuscation tool to match your specific needs. For example, we increased
the level of encryption by removing the optimization option and customizing the obfuscation dictionary. The
result is shown below.

UML Class Diagram after obfuscation

Conclusion

This article presented the obfuscation process and highlighted the main features such as encryption and
optimization. The insertion of obfuscation into the existing SAP XI development processes is another
challenge. It requires appropriate thinking, preparation and management. Another learning of this article is
that proven technologies in the Java environment can be easily transferred and reused in SAP XI Exchange
Infrastructure.

© 2006 SAP AG 13

Disclaimer and Liability Notice

This document may discuss sample coding or other information that does not include SAP official interfaces
and therefore is not supported by SAP. Changes made based on this information are not supported and can
be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods
suggested in this document, and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of
this technical article or code sample, including any liability resulting from incompatibility between the content
within this document and the materials and services offered by SAP. You agree that you will not hold, or
seek to hold, SAP responsible or liable with respect to the content of this document.

© 2006 SAP AG 14

	Applies to:
	Summary
	Authors Bio
	Table of Contents
	Why Obfuscate Your Java Code?
	Prerequisites
	Overview of the Obfuscation Process
	Installing the Sample XI Java Mapping
	Obscuring the SAP XI Java Mapping
	Comparing Java Code Before and After Obfuscation
	Class Diagrams
	Before and After Comparison
	Optimization
	Advanced Obfuscation

	Conclusion
	Disclaimer and Liability Notice

