
Floorplan Manager for ABAP -
Developer's Guide

Release 701

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 2

Copyright

© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x,
System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM,
z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM,
Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower,
PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2
Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner,
WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM
Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business
ByDesign, and other SAP products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries all over the world. All other product and service names mentioned are the
trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP
AG and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 3

Icons in Body Text

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP Library documentation to help you identify
different types of information at a glance. For more information, see Help on
Help General Information Classes and Information Classes for Business
Information Warehouse on the first page of any version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, graphic titles, and table

titles.

EXAMPLE TEXT Technical names of system objects. These include report names,
program names, transaction codes, table names, and key concepts of a
programming language when they are surrounded by body text, for
example, SELECT and INCLUDE.

Example text Output on the screen. This includes file and directory names and their
paths, messages, names of variables and parameters, source text, and
names of installation, upgrade and database tools.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Angle brackets indicate that you replace these
words and characters with appropriate entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 4

Floorplan Manager...6
Getting Started ...6

User Interface Building Blocks..7
IF_FPM_UI_BUILDING_BLOCK Interface..7

Creating a Simple FPM Application ..9
Creating a Web Dynpro Component ...10
Creating a Web Dynpro Application ..11

Using Application Parameters ...12
Creating an Application Configuration with the FPM Configuration
Editor...13
Testing your FPM Application ...16

Configuration Editor for Floorplan Manager..16
Form Editor for Floorplan Manager ...19
List Editor for Floorplan Manager ..21
Tabbed Component Editor for Floorplan Manager22

Design Time with the FPM Configuration Editor23
Floorplan Instances in the FPM Configuration Editor23

Adding and Activating Sub-Steps ..25
FPM Toolbar ...26

Toolbar Buttons ...27
IF_FPM_CNR_GAF Interface..31
IF_FPM_CNR_OIF Interface ...34

FPM Identification Region (IDR)..36
IF_FPM_IDR Interface...37
Providing a Link to the FPM Configuration Editor in the IDR40

Quick Help...40
Create Quick Help ...41

Variants...43
Initial Screen ...44
Confirmation Screen ...45

FPM Event Loop...46
Different Categories of Web Dynpro Interfaces...................................49

Generic User Interface Building Block (GUIBB)......................................50
Feeder Classes ...50
Form Component (GUIBB FORM) ..51

IF_FPM_GUIBB_FORM Interface ...52
Form Editor for Floorplan Manager..56
Add Form...58

List Component (GUIBB LIST) ..60
IF_FPM_GUIBB_LIST Interface ..61
List Editor for Floorplan Manager ..65
Add List..66
Additional Information on the List Component68

Tabbed Component (GUIBB TABBED COMPONENT)70
Tabbed Component Editor for Floorplan Manager70
Add Tabbed Component..71
Changing the Tabbed Component Dynamically at Runtime73

Navigation ..74
Launchpad..75

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 5

Create a Launchpad with Applications..77
Include a Launchpad in the User Interface ...77
Working in the Navigation Customizing ..78
IF_FPM_NAVIGATION API (Runtime class CL_FPM_NAVIGATION) ...81
Integration: Navigation in the Event Loop ...86
IF_FPM_NAVIGATE_TO API ...86
Suspend and Resume ..88

Handling Dialog Boxes ...90
Triggering a Data-Loss Dialog Box in the FPM Event Loop....................90
Handling Application-Specific Dialog Boxes ...91
IF_FPM_WORK_PROTECTION Interface..94

FPM Message Management ..95
Using the FPM Message Manager ...96
IF_FPM_MESSAGE_MANAGER Interface ..97

Methods for Reporting Messages ...97
Methods for Raising Exception Messages ..103
Method for Clearing Messages ...105

FPM Message Manager FAQ ...106
Handling of Transactions..107

IF_FPM_TRANSACTION Interface ..108
Resource Management ..109

Setting the Transient Flag...113
Using IF_FPM_RESOURCE_MANAGER to Veto Release Decision ...113

Using an FPM Application Controller..114
IF_FPM_APP_CONTROLLER Interface...115

Using an Application-Specific Configuration Controller115
Sharing Data between UIBBs from different Components119
Embedding and FPM Application ...120

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 6

Floorplan Manager

Floorplan Manager (FPM) is a Web Dynpro ABAP application that provides a
framework for developing new Web Dynpro ABAP application interfaces consistent
with SAP UI guidelines. FPM currently supports you in creating and configuring user
interfaces with the following floorplans:

Object Instance Floorplan (OIF)

Guided Activity Floorplan (GAF)

Quick Activity Floorplan (QAF)

The following floorplan areas can be configured using the FPM configuration editor:

Identification Region (IDR)

Message Region (MR)

Context Navigation Region (CNR)

Roadmap Element

Floorplan content areas must also be UI guideline compliant and FPM provides pre-
defined UIBBs to support you in creating and configuring application-specific views
(“freestyle areas”). The common UI patterns Form, List, and Tabbed Area can be
configured using the FPM configuration editor.

FPM includes APIs for common functions such as navigation, data-loss handling,
messaging, and personalization.

FPM allows for modification-free customer adaptations.

System Requirements

This document outlines the features of Floorplan Manager as of release SAP NW 7.0
Enhancement Package 1 and SAP NW 7.1 Enhancement Package 1.

Getting Started

This section provides you with an overview of an FPM application and the steps
required by you to create a simple Hello World example application.

Once you have created your application, you are introduced to the FPM Configuration
Editor, which allows you to edit your application and to configure it at design time.

The FPM event loop and it various activities are explained to you, and finally you are
presented with time-saving design templates, allowing you to create guideline
compliant user-interfaces.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 7

Assumptions

A knowledge of ABAP OO and Web Dynpro for ABAP is assumed.

User Interface Building Blocks

From an FPM perspective, UIBBs are the interface views (Web Dynpro ABAP
windows) that are provided by the external application and not by FPM itself.

In order that the FPM framework recognizes a UIBB, the Web Dynpro component
that provides the UIBB must implement the IF_FPM_UI_BUILDING_BLOCK Web
Dynpro interface. The IF_FPM_UI_BUILDING_BLOCK interface ensures that the Web
Dynpro application can take part in the FPM event loop.

For more information, see IF_FPM_BUILDING_BLOCK Interface.

IF_FPM_UI_BUILDING_BLOCK Interface

This Web Dynpro interface ensures that a Web Dynpro application and its UIBBs can
take part in the FPM Event Loop.

Methods

The methods of this interface are described in the following table:

Method Name Method Description

FLUSH

This is the first method called after the FPM event loop
has been started.

In this method, the UIBB needs to transport all modified
data from the views to other components the UIBB wants
to communicate with later on.

Normally this data transport is done automatically using
Web Dynpro context mapping. Therefore, you will only
need to do a specific implementation of this method if you
are not using these automatic mechanisms.

NEEDS_CONFIRMATION

With this method, the UIBB requests that the subsequent
event processing is stopped and asks the user for
confirmation by way of a dialog box. Depending on the
action the user takes in the dialog box, the event loop is
continued or cancelled. For more details, refer to chapter
Triggering a Data Loss Dialog Box.

PROCESS_EVENT Within this method the UIBB completes the following
tasks:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 8

Method Name Method Description

Checks for local consistency (validation, missing
data, etc).

Perform the actual event processing.

The local check is needed to inform the user of potential
input errors as soon as possible. In accordance with UX
guidelines, checks are to be performed continually (as
long as they are not too performance-intensive). For
example, when switching from one view to another view
in an OIF application, the view (UIBB) which is moved
away from must check for local consistency.

However, this does not exempt the application from
performing a complete check (including performance
critical checks) before saving. This must be handled in the
method IF_FPM_TRANSACTION_CHECK_BEFORE_SAVE.

Besides the consistency check this method contains the
actual processing of the event. For this, the current event
can be identified through the attributes MV_EVENT_ID and
MO_EVENT_DATA on the passed on event instance io_event.
Depending on whether the event is processed successfully
or not, the exporting parameter EV_RETURN must be filled
with either IF_FPM_CONSTANTS~GC_EVENT_RESULT-OK or
IF_FPM_CONSTANTS~GC_EVENT_RESULT-FAILED.

A typical implementation of PROCESS_EVENT is shown
below:

 Syntax
1. IF io_event->mv_event_is_validating =

abap_true.
2. Do local checks and report messages

if needed
3. ENDIF
4. CASE io_event->mv_event_id.
5. WHEN XYZ
6. Handle event and fill EV_RETURN

accordingly with a value from
IF_FPM_CONSTANTS~GC_EVENT_RESULT

7. ENDCASE.

If the event processing requires further user interaction
(e.g. asking for further data in a dialog box), the event
processing can be deferred by returning EV_RETURN =
IF_FPM_CONSTANTS~GC_EVENT_RESULT-DEFER.

AFTER_FAILED_EVENT This method is called by the FPM if an event could not be
processed successfully. In this case the UIBB needs to

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 9

Method Name Method Description

ensure that its UI reverts to the state before the user
interaction occurred.

Example:

Selecting an option in a ‘Lead’ field in a table triggers the
display of the details of a new line in another UIBB. The
event could fail if the UIBB for the details contains
unsaved data for the previously selected table line. As the
detail form still contains the details of the original table
line (after the failed event), the Lead selection must be
reverted to the original table line too.

If the PROCESS_EVENT method of the current UIBB has
been processed successfully, but the event processing
failed due to a problem in another UIBB, the actual event
processing needs to be reverted as well. The parameter
IV_REVERT indicates this situation.

PROCESS_BEFORE_OUTPUT
The last method to be called on the UIBB is the
PROCESS_BEFORE_OUTPUT. The data to be displayed is
read from the model.

Creating a Simple FPM Application

Here you create a simple Hello World FPM application based on either the OIF or
GAF. The OIF application will contain 2 tabs, each containing a single subview tab;
the GAF application will contain 2 road steps.

This process is performed in the Web Dynpro ABAP Workbench.

Process

You construct an FPM application by completing the following steps:

1. Create a Web Dynpro Component with the required UIBBs and implement the
Web Dynpro interface IF_FPM_UI_BUILDING_BLOCK.

2. Create a Web Dynpro Application and specify parameters according to which
floorplan instance you are using.

3. Using the FPM Configuration Editor, create a configuration for the
application.

4. Test your application.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 10

An FPM application is composed of a number of different Web Dynpro components
(most of which are instantiated dynamically at runtime). However, the following two
components are always present:

a floorplan-specific component (FPM_GAF_COMPONENT or
FPM_OIF_COMPONENT)

a component for the Header Area (FPM_IDR_COMPONENT)

In simple terms, the configuration of an FPM application is the configuration of these
two components.

Creating a Web Dynpro Component

Procedure

Creating the Web Dynpro Component

1. Open the Web Dynpro ABAP Workbench.

2. In the Object Navigator, right-click the Web Dynpro node and choose
Create Web Dynpro Component (Interface) .

3. In the Web Dynpro: Component/Create Interface dialog box, enter a name,
description and window name (the window name must be different from the
View name).

4. Save your entry.

5. In the Attributes section view of the Create Object Entry Directory dialog box,
enter the relevant Package.

6. Save your entry. The preview displays your new (inactive) Web Dynpro
Component.

7. Choose the Implemented Interfaces tab.

8. In the first row of the Name column, enter the FPM interface
IF_FPM_UI_BUILDING_BLOCK and save your entry.

9. In the Action column, choose Reimplement. The icon in the Implementation
State column indicates that your component is completely implemented.

10. Choose Activate.

11. In the Activation dialog box, select all associated, inactive components and
choose OK.

Adding Views to your Web Dynpro Component

When you create a component, Web Dynpro automatically creates and assigns a
Window and a View to it. You may add further Windows and Views. It is
recommended that you add only one View to one Window.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 11

1. In the Object Navigator, find your new Web Dynpro component and expand
its node.

1. Expand the Views node and double-click the existing View. The View
appears in the preview.

2. In the Layout tab, click once on the Caption element. A blue square
appears in the preview, ready to display your text.

3. In the Properties Section, enter Hello in the Text property. Choose
Save and your text appears in the preview.

2. Choose Activate.

1. In the Activation dialog box, select all associated, inactive components
and choose OK.

3. Add a second View:

1. Right-click the View node and choose Create. Give your View a name
and choose OK.

2. Add a caption element and enter the text Welcome to the world of
FPM.

4. Add this view to a new Window (which you create now):

1. Right-click the Windows node and choose Create.

2. In the Web Dynpro: Create Window dialog box, enter a Window name
and choose OK.

3. The preview automatically displays the Window tab. In the Window
Structur column, there is a node with your new Window’s name.

4. Drag your new View from the Object Navigator onto this node so that
it is included in the Window structure (expand the node to see the new
listed below it).

5. Save and activate your new Window.

Result

You have now created a Web Dynpro Component, implemented the required
IF_FPM_UI_BUILDING_BLOCK interface and configured two views (in two separate
windows) for your component.

Creating a Web Dynpro Application

Prerequisites

You have already created a Web Dynpro component with two views.

Procedure

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 12

1. In the Object Navigator, right-click your Web Dynpro Component and choose
Create Web Dynpro Application

In the Create Web Dynpro Application dialog box, enter a name for your
application and choose OK. Your new Web Dynpro Application appears in the
preview.

2. Enter the following information to create either an OIF or a GAF application:

o Component: FPM_OIF_COMPONENT / FPM_GAF_COMPONENT

o Interface View: FPM_WINDOW

o Plug Name: Default

3. Save your entries.

In the Create Object Directory Entry dialog box, enter the relevant Package
and choose OK.

Result

You have created a Web Dynpro application based on an OIF or GAF floorplan
instance.

If you want to add parameters to your application, see Using Application Parameters.

Using Application Parameters

Application parameters are defined at Web Dynpro Application level.

To define your application parameters, proceed as follows:

1. In the Web Dynpro Object Navigator, double-click your Web Dynpro
application.

2. Choose Parameters. You can add arbitrary parameters as application-specific
attributes to your Web Dynpro application. During runtime, these parameters
are exposed via IF_FPM->MO_APP_PARAMETER. MO_APP_PARAMETER stores an
instance of IF_FPM_PARAMETER. With this interface you are able to retrieve
the parameters.

Note that there is no concept of mandatory or optional parameters. For security
reasons, you must never trust parameters passed by a different application. Always
complete a proper validation before you use application parameters.

There are other FPM-specific parameters which you can add to your application.
These are detailed in the table below.

Parameter Parameter Description

FPM_SHOW_MESSAGE_LOG You can turn on a log history of the messages for a

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 13

Parameter Parameter Description

particular application. When the message log is turned
on, all the previously reported messages are displayed.

FPM_MAXIMUM_MESSAGE_SIZE

When a message is created in the application, the
message area displays as many messages as possible.
As soon as the visible number of messages in the
message area exceeds the configured message size, a
scroll bar will appear in the message area, allowing
the user to read all messages. The maximum size of
the message is set via configuration.

FPM_HIDE_CLOSE With this parameter, you can hide the Close button on
the FPM toolbar for your application.

Creating an Application Configuration with the FPM
Configuration Editor

Prerequisites

You have already created a Web Dynpro component with two views and have created
a Web Dynpro application implementing the FPM_OIF_COMPONENT or
FPM_GAF_COMPONENT interface.

Procedure

1. In the Object Navigator, right-click your new Web Dynpro Application and
choose Create/Change Configuration. The FPM Configuration Editor (Editor
for the Web Dynpro ABAP Application Configuration) opens in a browser
window.

2. Enter a name for your application’s configuration in the Configuration ID
field. Note that configuration names are global; you may not use the same
configuration name for different applications.

3. Choose Create. In the Create Configuration dialog box, enter the relevant
Package and choose OK.

4. The application configuration window displays your new configuration.
Within your configuration are the following two components:

o FPM_OIF_COMPONENT (or FPM_GAF_COMPONENT)

o FPM_IDR_COMPONENT

5. You will create configurations for both of these components. In the
configuration column, enter names for both components and choose Save. A
message appears to inform you that the components are saved, but that the
configurations do not actually exist. You will create a configuration for the
OIF (or GAF) component now.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 14

6. Select the row containing your FPM_OIF_COMPONENT (or FPM_GAF_COMPONENT)
and choose Go To Component Configuration.

1. Choose Create to configure the component.

2. In the Create Configuration dialog box, choose the relevant Package
and choose OK.

7. The FPM Configuration Editor displays the Component Configuration
window for your OIF (or GAF) component. The FPM Component
Configuration window is divided into the following areas:

o Navigation hierarchy: shows the screen elements in your application
which you can configure

o Preview: displays the element you have selected in the hierarchy and
allows you to change the attributes of the element

o Action area: allows you to add various elements to your individual
screens (for example, toolbar buttons, main views or UIBBs)

For a simple application, you require only one variant, one main view
and one subview. The FPM Configuration Editor automatically
provides these entities (with default IDs and names).

8. Complete the configuration by performing the following steps below.

Configuring the Component and IDR Configurations

Configuring the FPM_OIF_COMPONENT

1. The preview of the Component Configuration window displays 1 main view
containing 1 subview.

2. To add the second main view tab, choose Add Main View in the action area.

3. In the hierarchy, expand the two Main View nodes and the two Subview nodes.
Note the two UIBB elements, one for each subview. Choose the UIBB
element belonging to the first subview to display its attributes in the preview.

4. Set these attributes to your first window (with accompanying view) of your
Web Dynpro component (containing the text ‘Hello’).

1. Enter the Component name (use the input help and search function to
find your component).

2. Enter the View (once you have entered the component name, the View
input help displays the list of views for that component).

5. In the hierarchy, choose the other UIBB element to display its attributes. Set
these attributes to your second window (with accompanying view) of your
Web Dynpro component (containing the text 'Welcome to the world of FPM').

6. Choose Save. A confirmation (or error) message appears near the top of the
screen.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 15

You have now added your component views to the application and are ready to
configure the IDR Component of your application’s configuration.

Configuring the FPM_GAF_COMPONENT

1. The preview of the Component Configuration window displays 1 main step
containing 1 UIBB. There are also two buttons, Previous and Next, which the
FPM automatically displays in the toolbar for you.

2. To add the second step, choose Add Main Step in the action area.

3. In the hierarchy, expand the two Main Step nodes. Note the two UIBBs, one
for each step. Choose the first UIBB element to display its attributes in the
preview.

4. Set these attributes to your first window (with accompanying view) of your
Web Dynpro component (containing the text ‘Hello’).

1. Enter the Component name (use the input help and search function to
find your component).

2. Enter the View (once you have entered the component name, the View
input help displays the list of views for that component).

5. In the hierarchy, choose the other UIBB element to display its attributes. Set
these attributes to your second window (with accompanying view) of your
Web Dynpro component.

6. Choose Save. A confirmation (or error) message appears near the top of the
screen.

You have now added your component views to the application. You are now ready to
configure the IDR Component of your application’s configuration.

Configuring the FPM_IDR_COMPONENT

Once you have created a configuration for your OIF (or GAF) component, you are
then ready to create a configuration for the IDR component.

1. In the action region of the Component Configuration window, choose
Configure IDR. The Configuration ID field displays the name you provided in
the previous steps for your IDR component configuration.

2. Choose Create. In the Create Configuration dialog box, enter the relevant
Package and choose OK. The Component Configuration window displays
your IDR Configuration.

3. In the hierarchy, choose IDR Basic. The preview displays the attributes of the
IDR Basic. Enter the following data:

o Application Title

o Tooltip (optional)

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 16

4. Choose Save. If there are error messages, they appear at the top of the
window, underneath the window’s title. Note that in an OIF application there
is an extra button in the Action Pane, Add IDR Extended. This provides you
with the optional Extended Identification Region and its attributes.

Result

You have now created your first FPM application configuration. You can now test
your FPM application.

Testing your FPM Application

Procedure

1. Open the Web Dynpro ABAP Workbench.

2. In the Object Navigator, locate your FPM application under the Web Dynpro
Applications node.

3. Right-click your application and choose Test. Your application opens.

Note that your own component views (UIBBs) appear in the freestyle Content Area of
the FPM application.

Configuration Editor for Floorplan Manager

You use the Floorplan Manager configuration editor to enhance application user
interfaces and fit them to your business needs.

Features

The configuration editor consists of the following work areas:

Navigation region

This region is divided into the following subregions:

o Control area

In this area, you select which screens you would like to configure for
the selected Web Dynpro application. You can choose whether you
want to see the preview of the initial screen, the main views of an
application variant, or the confirmation screens of the selected
application.

In this region, you can use the Change or Display buttons to display or
configure the application's global settings and variant parameters.

 Note

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 17

You can store multiple variants of a selected floorplan for one
Floorplan Manager application. A variant gives you an additional level
of differentiation within Floorplan Manager. For example, you can use
variants to show multiple user roles in the same application at the same
time. The individual variants are separated from one another in an
initial screen.

o Hierarchy

This region gives you a hierarchical display of the elements you can
configure. The elements you can configure depends on the current
configuration of the application. The hierarchy shows elements on the
screen that you have selected.

Preview

The preview function shows you the user interface of the application. You can
use the preview function to navigate within the user interface. However, not
every element can be accessed. A selected element is highlighted in color in
the hierarchy view and its attributes displayed in the attribute view.

Action area

The action area contains links to all the actions you can execute for the
selected application user interface. The actions that can be selected depend on
the concrete configuration of the application. This means that selection of
actions can differ within a configuration.

Attribute view

When you select a configurable user interface element either in the preview or
in the hierarchy, the attributes of these user interface elements are displayed in
the attribute view. You can change these attributes here. The attributes you can
change depend on the user interface element you selected. You can
immediately see any changes made in the preview.

Message area

In this area, potential conflicts in the configuration, such as tabs with the same
name, are immediately displayed.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 18

Preview

Attribute View

Action
Region

Navigation
Region

Message Region

Configuration Editor for Floorplan Manager

Control
Region

Hierarchy

Structure of the configuration editor

Every user interface element is defined and configured using its attributes. Your
authorization profiles determine whether you can carry out a configuration or
enhancement of user interface elements. The following two authorization profiles are
of importance:

S_DEVELOP

With the authorization profile for ABAP Workbench, you can make any and
all changes to a user interface developed with Web Dynpro ABAP.

S_WDR_P13N

You can use this authorization profile to make changes to a user interface if
the S_DEVELOP authorization profile is not assigned to your user. It authorizes
you to configure a Web Dynpro application in administrator mode.

For more information on these authorization profiles, see SAP Library for Web
Dynpro ABAP under Authorization Checks in Configuration/Personalization.

You can use the configuration editor to perform Web Dynpro built-in configuration as
well as component-defined configurations of user interface elements. For more
information on Web Dynpro built-in and component-defined configuration, see
Fitting Web Dynpro to Your Needs.

Activities

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 19

You can launch the configuration editor for Floorplan Manager in one of the
following ways:

At runtime in administrator mode, from the application user interface using the
Adapt Configuration link.

At runtime in expert mode, from the application user interface using the
Change Configuration link.

At design time in Web Dynpro Application Configuration in the Object
Navigator of the ABAP Workbench.

At design time in Web Dynpro Component Configuration in the Object
Navigator of the ABAP Workbench.

Form Editor for Floorplan Manager

You use the form editor to adjust a form in an application to your specific business
requirements. This is done by configuring form components.

Features

The form editor consists of the following work areas:

Preview

In the preview, all form elements from the current configuration are displayed
so as to give you a picture of the layout of the form.

Hierarchy

All form elements (groups, melting groups, and elements) are displayed in the
hierarchy.

Attribute view

Attributes of the currently selected form element that can be changed using the
form editor are displayed in the attribute view.

Action area

The action area contains links to all the actions you can execute for the form
component. The actions that can be selected depend on the concrete
configuration of the form. This means that it can differ within a configuration.

The form editor provides you with the following actions:

Add Group

Add Melting Group

Edit Feeder Class

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 20

Edit Parameters

Configure Toolbar

Configure Group

The form editor provides you with the following functions for editing a group:

Change Group Attributes

The group name, group type, and index can be changed.

Add New Group

Add Melting Group

Add Element

You can select a field from the field catalog and determine the label text and
display type.

Delete Group

The form editor provides you with the following functions for editing a melting
group:

Add Group Element

You can select a field from the field catalog. Fields are configured in more
detail by changing the group element attributes.

Change Group Element Attributes

The display type, visibility of the label, label text, and index can be changed.
Any other group element attributes that can be changed depend on the display
type.

Delete Group Element

The form editor provides you with the following functions for editing a toolbar:

Add Button

Change Button

Delete Button

The form editor is launched in a separate browser window. You can launch the form
editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a form component.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 21

The form editor launches from the configuration editor for Floorplan Manager
automatically when you launch the configuration of an application-specific view
(UIBB) that uses the FPM_FORM_UIBB Web Dynpro component.

List Editor for Floorplan Manager

You use the list editor to adjust a list within an application to you specific business
requirements. This is done by configuring list components.

Features

The list editor consists of the following work areas:

Preview

In the preview, the list in the current configuration is displayed so as to give
you a picture of the layout of the list.

Hierarchy

All list elements (columns, toolbar, and parameters) are displayed in the
hierarchy as a tree structure.

Attribute view

Attributes of the currently selected list element that can be changed using the
list editor are displayed in the attribute view.

Action area

The action area contains links to all the actions you can execute for the list
component. Which actions can be selected depends on the concrete
configuration of the list. This means that the selection of actions can differ
within a configuration.

The list editor provides you with the following actions:

Edit Feeder Class

Edit Parameters

Configure Column

Configure Toolbar

The form editor provides you with the following functions for editing a column:

Add Column

You can select a field from the field catalog and determine the column header
and display type.

Delete Column

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 22

The list editor is launched in a separate browser window. You can launch the list
editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a list component.

The list editor launches from the configuration editor for Floorplan Manager
automatically when you launch the configuration of an application-specific view
(UIBB) that uses the FPM_LIST_UIBB Web Dynpro component.

Tabbed Component Editor for Floorplan Manager

You use this editor to adjust a tabbed component within an application to you specific
business requirements. This is done by configuring the component.

Features

The editor consists of the following work areas:

Preview

In the preview, all application-specific views (UIBBs) from the current
configuration are displayed so as to give you a picture of the layout of the
tabbed component.

Layout

In this area, you determine whether the tabbed component should be arranged
horizontally or vertically.

Hierarchy

All application-specific views (UIBBs) are displayed in the hierarchy as a tree
structure.

Attribute view

Attributes of the currently selected application-specific view (UIBB) that can
be changed using the editor are displayed in the attribute view.

Action area

The action area contains links to all the actions you can execute for the tabbed
component.

The editor for a tabbed component provides you with the following actions:

Add Master Component (technical name: MASTER UIBB)

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 23

Add Tab (technical name: TAB)

Add Application-Specific View to Tab (technical name: TAB UIBB)

The editor for a tabbed component is launched in a separate browser window. You
can launch the editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a tabbed component.

The editor for a tabbed component launches from the configuration editor for
Floorplan Manager automatically when you launch the configuration of an
application-specific view (UIBB) that has the FPM_TABBED_UIBB Web Dynpro
component.

Design Time with the FPM Configuration Editor

Within the FPM Configuration Editor, the Component Configuration windows (for
your OIF, GAF, and IDR components) help you to design the layout of your
application.

Within the component configuration windows, you can perform the following tasks:

Add extra steps or views (depending on your floorplan instance), including
substeps and sub views

Configure the toolbar with predefined buttons and navigation menus and
attach events to these elements

Attach your UIBBs to the relevant steps or views (or attach the FPM
predefined GUIBBs)

Configure Quick Help for your application

Configure an initial screen, a confirmation screen and extra variants for your
application

Change the global settings for your application and set variant parameters

The interface view of your application is the smallest unit of application UI that can
be configured in the FPM. By assigning the interface view as a UIBB you are in effect
composing how your application content area will look when the application runs
within FPM.

Floorplan Instances in the FPM Configuration Editor

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 24

What you see in the hierarchy of the FPM Configuration Editor depends on the type
of Floorplan instance you are using in your application.

OIF Instance

In an OIF application, FPM displays your UIBBs in multiple tabs within the Content
Area. The hierarchy displays the following types of views:

Main View: These represent a single tab within the Content Area of your
application. Attributes allow you to name and identify the individual tabs.
Each Main View contains one or more sub-views.

To add more tabs, choose Add Main View.

Sub-View: You add your UIBBs to the sub views. An FPM application must
have at least one UIBB for each sub view. The FPM Configuration Editor
automatically provides this, but you can add your own predefined UIBBs from
your application. These UIBBs will be rendered one beneath the other. As well
as containing UIBBs, sub views enable you to further divide your tabs for
more complex applications. You can configure headings for both main- and
sub-views. However, if you create only one main view with only one subview,
then no tabs are displayed at all.

Adding UIBBs to a Sub View:

1. In the hierarchy, select the sub view in which you want to add your
UIBB(s) and choose Add UIBB.

2. In the attribute view, enter the following details:

Component (the name of the Web Dynpro component
implementing the FPM interface IF_FPM_UI_BUILDING_BLOCK)

View (the name of the above Web Dynpro component’s
Window containing the UIBB)

GAF Instance

In a GAF application, FPM displays your UIBBs as individual steps in the overall
Roadmap. For GAF applications, the hierarchy displays the following types of steps:

Main Step: Each main step in the hierarchy represents one roadmap step. An
FPM application must have at least one UIBB for each main step. The FPM
Configuration Editor automatically provides this but you can add your own
predefined UIBBs from your application. Attributes allow you to name and
identify the individual main steps.

Sub Step: A substep is a step that appears between two main steps. Attributes
allow you to name and identify the individual substeps. Like a main step,
substeps must have at least one UIBB. You add UIBBS to a substep in the
same way you add them to a sub view.

Substeps are not visible at startup, but all main steps that are a possible
starting point for substeps are indicated as such on the Roadmap Element at
runtime. Whether a substep is completed or not at runtime, depends on the

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 25

application context and the user input. Therefore, substeps are statically
declared but activated at runtime by the application (via the FPM API).

For more information on adding substeps and dynamically activating them,
see Adding and Activating Substeps.

Adding and Activating Sub-Steps

Procedure

The configuration of substeps is similar to that of main steps. You can add one or
more substeps to a main step and each substep can contain one or more UIBBs.

To add substeps, perform the following steps:

1. In the FPM Configuration Editor, open the Component Configuration
window.

2. In the hierarchy, select the main step to which you want to add a substep.
Choose Add Sub-Step from the action region.

3. In the attribute view, enter the following data:

o SUBSTEP: Enter the Component ID andName. The name will be
shown at runtime beneath the corresponding substep.

o SUBSTEP_UIBB: Enter the Component and Window. In Window enter
the name of the Web Dynpro window of the interface view (not the
name of the Web Dynpro view itself).

After a substep has been configured statically, you may invoke it at runtime via the
FPM API. This is done by raising a special FPM event. Before raising this event, the
event parameters are populated with the corresponding substep ID that you want to
use. This is shown in the sample code below:

 Syntax
1. DATA: lo_fpm TYPE REF TO if_fpm,
2. lr_event TYPE REF TO cl_fpm_event.
3. * get reference to FPM API
4. lo_fpm = cl_fpm_factory=>get_instance().
5. * create event
6. lr_event = cl_fpm_event=>create_by_id(

cl_fpm_event=>gc_event_change_step).
7. * fill event parameters
8. lr_event->mo_event_data-set_value(
9. iv_key = cl_fpm_event=>gc_event_param_mainstep_id
10. iv_value = <ID of Main Step>).
11. lr_event->mo_event_data->set_value(
12. iv_key = cl_fpm_event=>gc_event_param_substep_id
13. iv_value = <ID of Sub-Step>).
14. lr_event->mo_event_data->set_value(
15. iv_key = cl_fpm_event=>gc_event_param_subvariant_id
16. iv_value = <ID of Sub-Step variant>).
17. * now raise event
18. Web Dynpro_this->fpm->raise_event(io_event = lr_event)

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 26

 .

FPM Toolbar

FPM allows you to construct toolbars according to the SAP UI Guidelines. You
choose which toolbar elements you require and FPM positions them in a
predetermined location. FPM allows you to configure the following toolbar elements:

Standard function buttons: buttons such as Save, Edit, Finish, Read-Only

Application-specific buttons: buttons to which you add your own code

Button choices: buttons which offer the user a dropdown menu with a list of
further options. You can define the individual menu options in a button-choice
and attach events to them. FPM provides no predefined events for these menu
options but allows you to attach your own events instead. To attach your own
predefined event to a button, enter a menu option name (Label) and the event
ID. When the menu option is selected during run-time, the FPM will call up
the attached event. A button choice is indicated in the Add Toolbar Element
dialog box by a small arrow in the bottom right-hand corner of the button.

Navigation menus

 Note

The Close button appears automatically on the FPM toolbar but you cannot configure
it like the above standard function buttons. You can hide it by using the CNR API or
with an application parameter FPM_HIDE_CLOSE=X.

Differences between an OIF and a GAF Toolbar

OIF Application

There is only one toolbar in every OIF variant. This toolbar contains more standard
buttons than the GAF toolbar. Additionally, the OIF toolbar has two more options to
create application-specific buttons. FPM automatically adds a Save button to an OIF
toolbar when you create the component configuration. As the Save button belongs to
the category Activation Function, you can configure it (e.g. with a tooltip, label or
event).

GAF Application

In a GAF application, every main step and substep inside a variant has its own
toolbar. This enables you to have a different toolbar configuration at each step in the
roadmap. FPM automatically adds the Next and Previous buttons to a GAF toolbar
when you create the component configuration.

 Note

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 27

There is no ‘main’ toolbar in a GAF application. If you require a particular button on
the toolbar at each step in the roadmap, you add it to each substep toolbar.

Activities

Adding Elements to a Toolbar

1. In the FPM Configuration Editor, locate the OIF or GAF component of your
application and choose Change. This opens the OIF or GAF component
configuration in edit mode.

2. To add an element to a toolbar, choose Add Toolbar Element in the action
area. The Add Toolbar Element dialog box appears.

3. Select a button and choose OK. The button now appears in the hierarchy under
Toolbar and the button’s editable attributes are visible in the preview.

Adjusting the Toolbar Dynamically

During runtime the content and visibility of the OIF and GAF toolbars may be
changed via the Context Navigation Region (CNR) APIs. Note that there are different
APIs for each floorplan type.

With these APIs you can dynamically change the FPM toolbars of both the initial
screen the and the main screen.

Toolbar Buttons

The following table describes some of the non self-explanatory toolbar buttons.

Toolbar Button
Name Button Description

Activation
Function

This button is intended primarily to be used as a Save button. As
most applications require a Save button, the FPM Configuration
Editor automatically adds this button to your configuration by
default. The FPM Event FPM_Save is set as the default FPM Event
ID but you can edit this.

Alternate
Function

Use this button when you need to call an application-specific
function from your application screen. You can add your own
application-specific event to it. This button appears in the same
toolbar region as the Activation (Save) button.

Other Function

Use this button when you need to call an application-specific
function from your application screen. You can add your own
application-specific event to it. This button appears in a toolbar
region separated from the Activation (Save) button. Additionally, it
has attributes for Explanation and Button Design.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 28

You can Also/
Related Links
(navigation
links)

These two toolbar elements provide navigation links away from the
FPM. These elements require a Role and an Instance, both of which
are taken from a launchpad which you must first create and
configure.

Close

FPM provides GAF applications with a Close button. You cannot
configure this button (when you select it at design time, you will see
no attributes). For technical reasons, this button is not visible in
every system (see CSN Note #1234843). If you need to hide this
button – e.g. your application is executed within an iView on a
portal page, please refer to chapters Using Application Parameters
and Adjusting the toolbar using the CNR API.

Exit to Main
Step (GAF only)

This is available only to sub-steps. If you click this button during
run-time you return to the Main Step to which the button is
assigned.

Finish

This is available only to main steps. If you click this button during
run-time, the roadmap is executed sequentially; the FPM will
navigate automatically through the roadmap as far as the last screen
(before the confirmation screen) or will stop prematurely if it
encounters an error.

Next Step/Final
Action (GAF
only)

Extra attributes are available for Next Step in the final roadmap step.
These attributes (Label, Event ID) allow you to execute your own
predefined final action before the confirmation screen. Each variant
of the roadmap can have one Final Action.

Toolbar Element Attributes

Toolbar elements have a variety of attributes and not every element has the same
attributes. The table lists some of the non self-explanatory toolbar button attributes.

Toolbar
Element
Attribute

Attribute Description

Element ID Enter an Element ID if you want to change the properties of a toolbar
element dynamically during runtime.

Duplicate
Toolbar

This allows you to display a copy of the toolbar at the bottom of your
application screen.

Sequence
Index

This allows you to choose the order in which your application-
specific UI elements (e.g. Other Function buttons, Main Steps) appear
on the toolbar or in the hierarchy. The toolbar elements which FPM
automatically adds to the toolbar can not be rearranged using this
attribute.

Repeat Sel. This is available for button-choice elements. If you tick this

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 29

Toolbar
Element
Attribute

Attribute Description

Action (Repeat
Select Action)

checkbox, the menu option that is selected from a button-choice at
run-time will then be visible as the button choice title for the current
session. If the user wishes to select the same option next time, he
must click only the button and not scroll through the list of menu
options.

Enabled This greys out a toolbar element; it renders a toolbar element
unusable if the checkbox is not ticked.

Visibility If you check the visibility attribute of both the button and the button-
choice, only the button is visible in the toolbar.

Toolbar Button Events

Every Standard Function button is attached to an FPM event (for example, Edit is
connected to the FPM event gc_event_edit). The connection to these raised FPM
events is hard-coded and cannot be changed. The event can, of course, be changed
dynamically by calling other events. Some button events are pre-configured by the
FPM (for example, the Previous and Next navigation button events and the Save
button event) and require no extra code, but generally the application must provide the
event processing. In general, the FPM ensures only that all affected UIBBs are
informed. For example, although the FPM provides a Print button, there is no print
support in FPM. FPM provides this button only to ensure that it is rendered according
to the SAP UI Guidelines. The application must provide the necessary print functions.

The table below lists the toolbar buttons (and button-choices) and the events that they
raise.

Toolbar
Button Event Raised Floorplan

Instance

Activation
Function self-defined via configuration OIF

Alternate
Activation self-defined via configuration OIF

Check gc_event_check OIF

Close gc_event_close OIF and
GAF

Delete
Object

gc_event_delete_current_object OIF

Edit gc_event_edit OIF

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 30

Toolbar
Button Event Raised Floorplan

Instance

Exit to Main
Step

gc_event_exit_to_main_step GAF

Load Draft gc_event_load_draft OIF

New gc_event_new OIF

Next Object gc_event_next_object OIF

Next Step
If no final action is defined: gc_event_next_step

If a final action is defined: the self-configured event in the
final action node and the next step event are raised

GAF

Other
function self-defined via configuration OIF and

GAF

Previous
Object

gc_event_previous_object OIF

Previous
Step

gc_event_previous_step GAF

Print gc_event_print OIF

Print
Preview

gc_event_print_preview OIF

Read Only gc_event_read_only OIF

Redo gc_event_redo OIF

Refresh gc_event_refresh OIF

Save As gc_event_save_as OIF

Save Draft gc_event_save_draft OIF and
GAF

Send gc_event_send OIF

Start Over gc_event_start_over OIF

Undo gc_event_undo OIF

Toolbar Button-Choice Event Raised Floorplan Instance

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 31

Toolbar Button-Choice Event Raised Floorplan Instance

Send self-defined via configuration OIF

Print self-defined via configuration OIF

Print Preview self-defined via configuration OIF

New self-defined via configuration OIF

IF_FPM_CNR_GAF Interface

This interface provides you with methods to dynamically change the FPM toolbar of
an initial screen or main screen.

The interface is accessed via the CL_FPM_SERVICE_MANAGER, as the code below
shows:

Accessing the API for a GAF application:

 Syntax
1. DATA: lo_cnr_gaf TYPE REF TO if_fpm_cnr_gaf,
2. lo_fpm TYPE REF TO if_fpm.
3. lo_fpm = cl_fpm_factory=>get_instance().
4. lo_cnr_gaf ?= lo_fpm->get_service(

cl_fpm_service_manager=>gc_key_cnr_gaf).

Methods

This interface provides you with the methods described in the table below.

Method Name Method Description

DEFINE_BUTTON

With this method either standard buttons or application-
specific buttons can be created and edited. The parameter
IV_FUNCTION defines the button type (see
IF_FPM_CONSTANTS=>gc_button). The ELEMENT_ID
is needed if application-specific buttons must be changed
subsequently.

DEFINE_BUTTON_CHOICE

With this method either standard button-choices or
application-specific button-choices can be created and
edited. The parameter IV_FUNCTION defines the button-
choice type (see
IF_FPM_CONSTANTS=>gc_button_choice). The
ELEMENT_ID is needed if application-specific buttons must
be changed subsequently.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 32

Method Name Method Description

CREATE_SEPARATOR Use this method to create a separator at runtime in the
OTHER_FUNCTIONS area (application-specific).

SET_DUPLICATE_TOOLBAR Use this method to activate or deactivate the duplication
of the toolbar.

DEFINE_YOU_CAN_ALSO Use this method to define launchpads for the You Can
Also menu bar for (see Navigation API chapter).

DEFINE_RELATED_LINKS Use this method to edit the menu bar for RELATED_LINKS
(see Navigation API chapter).

GET_BUTTONS This method determines which buttons (and their
configurations) are to be shown in the toolbar.

GET_BUTTON_CHOICES This method determines which button-choices (and their
configurations) are to be shown in the toolbar.

GET_SEPARATORS This method determines the positions of the separators in
the toolbar (only in the Other Functions area).

GET_RELATED_LINKS This method determines the contents of the Related Links
menu in the toolbar.

GET_YOU_CAN_ALSO This method determines the contents of the You Can Also
menu in the toolbar.

GAF Specific Parameters

Depending on the location of the UI elements that you wish to define, the following
parameters (outlined in the table below) are passed with every GAF CNR API
method:

Location of UI Elements Parameters

Main Step
VARIANT_ID

MAINSTEP_ID

Sub-Step

VARIANT_ID

MAINSTEP_ID

SUBVARIANT_ID

SUBSTEP_ID

Initial Screen Screen

Example

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 33

An example of method calls to change the CNR of the GAF at runtime is shown
below:

 Syntax
1. DATA: lo_cnr_gaf TYPE REF TO if_fpm_cnr_gaf,
2. lo_fpm TYPE REF TO if_fpm.
3. lo_fpm = cl_fpm_factory=>get_instance().
4. lo_cnr_gaf ?= lo_fpm->get_service(

cl_fpm_service_manager=>gc_key_cnr_gaf).
5. lo_cnr_gaf ->define_button(
6. EXPORTING
7. iv_variant_id = < optional; e.g. 'variant_1'; current

variant if skipped >
8. iv_mainstep_id = < optional; ‘mainstep_1’; current

mainstep if skipped >
9. iv_subvariant_id = < optional;‘subvariant_xyz’>
10. iv_substep_id = < optional;‘substep_99’>
11. iv_function = < e.g. EXIT_TO, FINISH,

OTHER_FUNCTIONS (appl-specific buttons), SAVE_DRAFT, NEXT_STEP)
see also IF_FPM_CONSTANTS=>gc_button >

12. iv_screen = < optional; the screen where the UI-
Element has to be changed (INIT, MAIN) >

13.
14. iv_element_id = < optional; only if you want to

change the properties of application-specific buttons
afterwards>

15. iv_sequence_id = < optional; only if you use
OTHER_FUNCTIONS; determines the place where to insert this
button >

16. iv_design = < optional; Button-Design >
17. iv_enabled = < optional; Button-Enabling >
18. iv_explanation = < optional; Button-Explanation >
19. iv_on_action = < optional; determines the Event-Id

for a button; not possible with standard buttons >
20. iv_text = < optional; Button-Label >
21. iv_tooltip = < optional; Button-Tooltip >
22. iv_visibility = < optional; Button-Visibility >
23. iv_default_button = < optional; only for NEXT button; by

pressing enter within an application triggers the action of
this button>).

24.
25. iv_hotkey = < optional; key-combination for

activating the event of this button>
26.
27. lo_cnr_gaf->define_button_choice(
28. EXPORTING
29. iv_variant_id = < optional; e.g.'variant_1';

current variant if skipped >
30.
31. iv_mainstep_id = < optional;‘mainstep_1’; current

mainstep if skipped >
32. iv_subvariant_id = < optional;‘subvariant_xyz’>
33. iv_substep_id = < optional;‘substep_99’>
34. iv_function = < e.g. OTHER_FUNCTIONS (appl-

specific button-choices)>
35. iv_screen = < optional; the screen where the

UI-Element has to be changed(INIT, MAIN) >
36.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 34

37. iv_element_id = < optional; only if you want to
change the button-choice properties afterwards>

38. iv_sequence_id = < optional; only if you use
OTHER_FUNCTIONS; determines the place where to insert this
button-choice >

39. iv_enabled = < optional; Button-Choice-Enabling
>

40. iv_text = < optional; Button-Choice-Label >
41. iv_tooltip = < optional; Button-Choice-Tooltip

>
42. iv_visibility = < optional; Button-Visibility >
43. it_menu_action_items = < menu elements of a Button-Choice

>).

IF_FPM_CNR_OIF Interface

This interface provides you with methods to dynamically change the FPM toolbar of
an initial screen or main screen.

The interface is accessed via the CL_FPM_SERVICE_MANAGER, as the code below
shows:

Accessing the API for an OIF application:

 Syntax
1. DATA: lo_cnr_oif TYPE REF TO if_fpm_cnr_oif,
2. lo_fpm TYPE REF TO if_fpm.
3. lo_fpm = cl_fpm_factory=>get_instance().
4. lo_cnr_oif ?= lo_fpm-

>get_service(cl_fpm_service_manager=>gc_key_cnr_oif).

Methods

This interface provides you with the methods described in the table below.

Method Name Method Description

DEFINE_BUTTON

With this method either standard buttons or application-
specific buttons can be created and edited. The parameter
IV_FUNCTION defines the button type (see
IF_FPM_CONSTANTS=>gc_button). The ELEMENT_ID
is needed if application-specific buttons must be changed
subsequently.

DEFINE_BUTTON_CHOICE

With this method either standard button-choices or
application-specific button-choices can be created and
edited. The parameter IV_FUNCTION defines the button-
choice type (see
IF_FPM_CONSTANTS=>gc_button_choice). The
ELEMENT_ID is needed if application-specific buttons must

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 35

Method Name Method Description

be changed subsequently.

CREATE_SEPARATOR Use this method to create a separator at runtime in the
OTHER_FUNCTIONS area (application-specific).

SET_DUPLICATE_TOOLBAR Use this method to activate or deactivate the duplication
of the toolbar.

DEFINE_YOU_CAN_ALSO Use this method to define launchpads for the You Can
Also menu bar for (see Navigation API chapter).

DEFINE_RELATED_LINKS Use this method to edit the menu bar for RELATED_LINKS
(see Navigation API chapter).

GET_BUTTONS This method determines which buttons (and their
configurations) are to be shown in the toolbar.

GET_BUTTON_CHOICES This method determines which button-choices (and their
configurations) are to be shown in the toolbar.

GET_SEPARATORS This method determines the positions of the separators in
the toolbar (only in the Other Functions area).

GET_RELATED_LINKS This method determines the contents of the Related Links
menu in the toolbar.

GET_YOU_CAN_ALSO This method determines the contents of the You Can Also
menu in the toolbar.

OIF Specific Parameters

Since a toolbar exists for every OIF variant, only the VARIANT_ID must be passed
with every OIF CNR API method.

Example

An example of method calls to change the CNR of the OIF at runtime is shown
below:

 Syntax
1. DATA: lo_cnr_oif TYPE REF TO if_fpm_cnr_oif,
2. lo_fpm TYPE REF TO if_fpm.
3. lo_fpm = cl_fpm_factory=>get_instance().
4. lo_cnr_oif ?= lo_fpm->get_service(

cl_fpm_service_manager=>gc_key_cnr_oif).
5. lo_cnr_oif->define_button(
6. EXPORTING
7. iv_variant_id = < optional; e.g. 'variant_1'; current

variant if skipped >
8. iv_function = < e.g. ACTIVATION_FUNCTIONS (appl-

specific buttons),ALTERNATE_FUNCTIONS (appl-specific buttons),

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 36

CHECK, DELETE_OBJECT, EDIT, LOAD_DRAFT, NEW, NEXT_OBJECT,
 OTHER_FUNCTIONS (appl-specific buttons), REVIOUS_OBJECT,
PRINT, PRINT_PREVIEW, READ_ONLY,REDO, REFRESH, SAVE_AS,
SAVE_DRAFT, SEND, START_OVER, UNDO, see also
IF_FPM_CONSTANTS=>gc_button >

9.
10. iv_screen = < optional; the screen where the UI-

Element has to be changed (INIT, MAIN) >
11.
12. iv_element_id = < optional; only if you want to

change the button properties afterwards >
13. iv_sequence_id = < optional; only if you use

OTHER_FUNCTIONS; determines the place where to insert this
button >

14. iv_design = < optional; Button-Design >
15. iv_enabled = < optional; Button-Enabling >
16. iv_explanation = < optional; Button-Explanation >
17. iv_on_action = < optional; determines the Event-Id

for a button; not possible with standard buttons >
18. iv_text = < optional; Button-Label >
19. iv_tooltip = < optional; Button-Tooltip >
20. iv_visibility = < optional; Button-Visibility >
21. iv_default_button = < optional; only for buttons CHECK

and REFRESH; by pressing enter within an application triggers
the action of this button >

22. iv_hotkey = < optional; key-combination for
activating the event of this

23. button >
24. lo_cnr_oif->define_button_choice(
25. EXPORTING
26. iv_variant_id = < optional; e.g. 'variant_1'; current

variant if skipped >
27. iv_function = < e.g. NEW, OTHER_FUNCTIONS (appl-

specific button-choices), PRINT, PRINT_PREVIEW, SEND, see also
IF_FPM_CONSTANTS=>gc_button_choice >

28. iv_screen = < optional>; the screen where the UI-
Element has to be changed (INIT, MAIN) >

29. iv_element_id = < optional; only if you want to
change the button-choice properties afterwards >

30. iv_sequence_id = < optional; only if you use
OTHER_FUNCTIONS; determines the place where to insert this
button-choice >

31. iv_enabled = < optional; Button-Choice-Enabling >
32. iv_text = < optional; Button-Choice-Label >
33. iv_tooltip = < optional; Button-Choice-Tooltip >
34. iv_visibility = < optional; Button-Visibility >
35. it_menu_action_items = < menu elements of a Button-Choice

>

FPM Identification Region (IDR)

The Identification Region (IDR) consists of the following three areas:

Header area (IDR Basic)

Ticket area (IDR Extended)

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 37

Items area

This is illustrated in the figure below:

Items Area
Header AreaTicket Area

Both the header and the ticket areas can be configured at design-time in the
Component Configuration window for the IDR configuration.

Note the following points regarding the ticket area:

The ticket area is only available for OIF applications.

To configure the ticket area, choose Add IDR Extended.

Attributes for Ticket Top and Ticket Bottom appear. These attributes can be
called dynamically to add label/value pairs, label/navigation link pairs and
label/icon pairs to the ticket area.

Adjusting the IDR Dynamically

During runtime, use the IDR API to make changes to the individual IDR areas. This
API consists of the methods encapsulated in the IF_FPM_IDR interface.

Adding a Link to the FPM Configuration Editor in the IDR

You can provide your application with a link to the FPM Configuration Editor from
the IDR. For more information, see Providing a Link to the FPM Configuration
Editor.

IF_FPM_IDR Interface

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 38

This interface provides you with methods to change the IDR dynamically at run-time.

The sample code below shows you how to access this interface:

 Syntax
1. DATA: lo_idr TYPE REF TO if_fpm_idr,
2. lo_fpm TYPE REF TO if_fpm.
3. lo_fpm = cl_fpm_factory=>get_instance().
4. lo_idr ?= lo_fpm->get_service(

cl_fpm_service_manager=>gc_key_idr).

There are methods available for each of the following IDR areas:

Header Area

Ticket Area

Items Area

Methods for IDR Header Area

Method Name Method Description

GET_APPLICATION_TITLE Retrieves the title text and its tooltip.

SET_APPLICATION_TITLE Displays a new title text and tooltip in the header area.

SET_HEADER_VISIBILITY Makes the header area visible or invisible.

Methods for IDR Ticket Area

Method Name Method Description

GET_TICKET Retrieves the texts of the ticket top, ticket bottom and
their tooltips.

SET_TICKET Displays new texts of the ticket top, ticket bottom and
their tooltips.

SET_TICKET_VISIBILITY Makes the ticket area visible or invisible.

Methods for Items Area

Method Name Method Description

ADD_ITEM_GROUP_BY_VAL

Adds a new item group to the item area. One item
consists of a label, its tooltip, a value and the value’s
tooltip. A group of items consists of an arbitrary
amount of such items. With this method, you can add
items to the IDR as simple static text strings.
Therefore, if the value of an item needs to be changed

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 39

Method Name Method Description

at a later point in time, you will need to call method
CHANGE_ITEM_GROUP_BY_VAL. The method
ADD_ITEM_GROUP_BY_REF can also be used to pass
references to Web Dynpro context nodes to the IDR.
In this case, the value changes automatically when the
value of the corresponding attribute in the context
node changes.

CHANGE_ITEM_GROUP_BY_VAL Changes the label and values that were passed to the
IDR via the method ADD_ITEM_GROUP_BY_VAL.

ADD_ITEM_GROUP_BY_REF

Similar to add_item_group_by_val. Adds label/value
items to the IDR. In this case, the value is not passed
as a static text but as reference to a Web Dynpro
context node attribute. The advantage here is that the
value can be of a type other than string. In addition,
updating the value happens automatically; whenever
the attribute of the context node changes, the IDR
changes the visible value. It is also possible for the
IDR to show the unit of the value. Do this using a
flag; the actual unit is taken from the DDIC
information of the value’s type. Therefore, this feature
will only work if the type of the attribute in the
context node, (which is passed to the IDR) has a
defined DDIC unit.

ADD_NAVIGATION_ITEM

Adds a pair of label/navigation links to the IDR. The
link itself is provided by the report launchpad. It
makes no difference whether the link in the report
launchpad is supplied by the database or is created
dynamically during runtime via the report launchpad
API. For more information about the report
launchpad, refer to the report launchpad
documentation. You specify the launchpad via the
parameters instance and role. Since one launchpad
may contain several targets (and this method is used
to add only one target), use an additional parameter to
specify the single target. The additional parameter is
either the application alias or the navigation key.

CHANGE_NAVIGATION_ITEM

Use this method to edit a pair of label / navigation
links that you added using the method
ADD_NAVIGATION_ITEM. It is possible to change only
the label and the link text with this method. If you
want to change the target itself, use the report
launchpad API.

ADD_IMAGE_ITEM Adds pairs of label/icons to the IDR.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 40

Method Name Method Description

CHANGE_IMAGE_ITEM Edits a label/icon pair that you added using the
method ADD_IMAGE_ITEM.

CONTAINS_ITEM_GROUP Checks whether a certain item group exists within the
IDR.

REMOVE_ITEM_GROUP Removes a certain item group from the IDR.

INITIALIZE_ITEMS Clears all items from the IDR.

SET_ITEMS_VISIBILITY Edits the visibility of the item area (i.e. the visibility
status of all items, not just single items).

Providing a Link to the FPM Configuration Editor in the IDR

There are currently two options to provide a link (in the IDR header area of your FPM
application) which points to the FPM Configuration Editor:

Using transaction SU3. To do this, proceed as follows:

1. Open transaction SU3 and choose the Parameters tab.

2. Add the parameter FPM_CONFIG_EXPERT and set the Parameter Value
to X.

The Change Configuration link appears in the IDR header area when you start
the FPM Configuration Editor, via the Web Dynpro Explorer, for your
application configuration. This corresponds to a change of the explicit and
implicit configuration in development mode.

Starting your FPM application with URL parameter sap-config-mode=X.

The link Adapt Configuration appears in the IDR header area when you start
the FPM Configuration Editor via Web Dynpro application
customize_component. This corresponds to a customizing of the explicit and
implicit configuration in the administrator mode. In thea administrator mode
you may adapt all elements of the configuration that have not been marked
previously as final elements in the development mode.

Quick Help

You can use this function in a floorplan to provide application users with a quick help
that gives a helpful explanation of a subview, initial screen, main step, or substep. The
quick help is only displayed if the user has activated it using the context menu.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 41

Features

You can either enter the quick help text directly or give a reference to a
documentation object. It is a good idea to use a reference to a documentation object
when the content of the quick help is used in multiple views or applications. If you
enter a text directly and enter a reference to a documentation object, then the content
of the documentation object is displayed as quick help.

You can display the quick help using the application's context menu. You can create,
change, or delete quick help texts.

 Note

The quick help text is stored in the hierarchical view of the configuration editor either
in the Text or Documentation Object attribute of an Explanation hierarchy element.

When you create a quick help from the action area of the configuration editor of
Floorplan Manager, the Explanation hierarchy element is created below the
corresponding hierarchy element (for example, subview details). Additionally, a
suggested text is created by the system in the Text attribute.

You can also delete a quick help completely by selecting the Delete function in the
attribute view of an Explanation hierarchy element.

Create Quick Help

Procedure

To create a quick help in the configuration editor, you can either enter the quick help
text directly or enter a reference to a documentation object.

Create Quick Help as Direct Text

1. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

2. In the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute in Administrator Mode

.

The Web Dynpro application is launched in a separate browser window.

3. In this window, go to the application's identification region and choose the
Adapt Configuration link.

4. In the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

5. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

6. Choose Expand All.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 42

7. Select the subview, main step, substep, or initial screen and choose Add
Explanation in the action area of the configuration editor.

 Note

The system automatically generates a suggested text for the explanation in the
Text field. The suggested text is composed of the title of the subview, main
step, substep, or initial screen and the prefix "explanation". For example, if a
substep has the title Details, then the suggested text is Explanation Details.

8. In the Text field in the attribute view, overwrite the suggested text with the
quick help text you would like.

9. Save the configuration.

10. Test the new configuration.

Create Quick Help Linking to a Documentation Object

1. To create a documentation object, choose SAP Menu Tools ABAP
Workbench Utilities SE61 – Documentation .

1. Choose General Text as the document class.

2. Enter a technical name for the documentation object.

3. Choose Create.

4. Then enter desired quick help text.

5. Choose Save Active.

The documentation object is now created and can be assigned as a
quick help.

2. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

3. In the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute in Administrator Mode

.

The Web Dynpro application is launched in a separate browser window.

4. In this window, go to the application's identification region and choose the
Adapt Configuration link.

5. In the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

6. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 43

7. Select the subview, main step, substep, or initial screen for which you would
ilke to add a quick help and choose Add Explanation in the action area of the
configuration editor.

 Note

The system automatically generates a suggested text for the explanation in the
Text field.

8. In the Documentation Object field of the attribute view, enter the technical
name of the documentation object.

9. Save the configuration.

10. Test the new configuration.

Variants

In some cases the final configuration of an OIF view switch or a GAF roadmap may
only be decided at runtime. For example, assume that an initial screen asks you to
select one of three options. The subsequent roadmap or view switch that appears is
dependent on the option you selected in the initial screen. FPM makes this possible by
allowing you to configure variants. Each variant is a complete set of configuration
data for an OIF view switch or a GAF roadmap. You use the input from the initial
screen (or from other startup information, such as application parameters) to select
one of the variants.

Configuring Variant Selection

Variant selection is controlled programmatically with an application-specific
configuration controller (AppCC).

To configure variant selection, proceed as follows:

1. Implement the interface IF_FPM_OIF_CONF_EXIT (or
IF_FPM_GAF_CONF_EXIT) in one of the application components or in a new
component. This interface has only one method OVERRIDE_EVENT_OIF (or
OVERRIDE_EVENT_GAF) which passes a handler object of type IF_OIF
(respective IF_GAF). This handler object provides the API with information to
manipulate the floorplan configuration at runtime.

2. To select the variant, use the SET_VARIANT method of this object as follows:

OIF Instance

 Syntax
1. method OVERRIDE_EVENT_OIF .
2. ...
3. case io_oif->mo_event->MV_EVENT_ID.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 44

4. when if_fpm_constants=>gc_event-
leave_initial_screen.

5. io_oif->set_variant().
6. ...

GAF Instance

 Syntax
7. method OVERRIDE_EVENT_GAF .
8. ...
9. case io_gaf->mo_event->MV_EVENT_ID.
10. when if_fpm_constants=>gc_event-

leave_initial_screen.
11. io_gaf->set_variant().

 Note

In this sample code the variant selection takes place after the initial screen is
exited. This is the latest point at which it is possible to select the variant. You
can, however, select the variant at an earlier stage.

The last thing to do is to declare the AppCC to the FPM:

1. In the FPM Configuration Editor, open the component configuration editor
window. In the control region, choose Change Global Settings .

2. In the Global Settings dialog box, under Application-Specific Parameters,
enter the Web Dynpro Component which you are using as an application-
specific configuration controller.

3. Choose Save.

Initial Screen

The Initial Screen is an optional screen. It is composed of one or more UIBBs.

Activities

Adding an Initial Screen

1. Start the FPM Configuration Editor and open the OIF or GAF component
configuration of your component.

2. In the control region, choose Add Initial Screen .

3. Choose Add UIBB Add UIBB and enter the component (ID) and the
relevant component window.

The FPM adds the Start Button automatically to the toolbar of the initial screen. It is
non configurable. When you choose this button at run-time, FPM raises the event

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 45

IF_FPM_CONSTANTS=>GC_EVENT-LEAVE_INITIAL_SCREEN, exits the initial screen,
and displays the first roadmap step (in GAF instances) or View Switch (in OIF
instances). Occasionally, you need to omit the initial screen from your application. If
this is the case, raise the LEAVE_INITIAL_SCREEN event within your application-
specific code:

 Syntax
1. data: lo_fpm type ref to if_fpm
2. lo_fpm = cl_fpm_factory=>get_instance()
3. lo_fpm->raise_event_by_id(IF_FPM_CONSTANTS=>GC_EVENT-

LEAVE_INITIAL_SCREEN)
.
If your application has no initial screen, FPM displays the view switch (OIF) or the
first roadmap step (GAF) at start-up.

Skipping the Initial Screen

OIF and GAF applications may start with an initial screen, in which you select the
object you intend to work with. If the object is already known by the application (e.g.
you are calling the application with the parameters already set), the initial screen is
unnecessary. To skip an initial screen at runtime, proceed as follows:

Launch the FPM event LEAVE_INITIAL_SCREEN. You can launch this one of two
ways:

in the OVERRIDE_EVENT_*-method of your AppC

in the PROCESS_BEFORE_OUTPUT method of one of your initial screen UIBBs
(if you are not using an AppCC):

 Syntax
1. data: lo_fpm type ref to if_fpm,
2. lv_object_id type string.
3. * Check event id
4. if lv_event_id = if_fpm_constants=>gc_event_start.
5. * Determine if Parameter OBJECT_ID is provided
6. lo_fpm = cl_fpm_factory=>get_instance().
7. lo_fpm->mo_app_parameter->get_value(
8. exporting iv_key = 'OBJECT_ID'
9. importing ev_value = lv_object_id).
10. * In case OBJECT_ID is set, navigate directly to the

main floorplan * area
11. if not lv_object_id is initial.
12. lo_fpm->raise_event_by_id(
13. if_fpm_constants=>gc_event-

leave_initial_screen).
14. endif
15. endif

Confirmation Screen

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 46

FPM does not provide a confirmation screen by default. However, a confirmation
screen is available to both the OIF and GAF instances.

Confirmation screens may be variant dependent (that is, each variant of your
application may require a different confirmation screen). FPM allows you to
configure a confirmation screen for each variant.

Confirmation Screen in OIF Instances

In OIF applications, the confirmation screen appears only when the object currently
being processed in the application is deleted. After an object has been deleted, the
confirmation screen appears in place of the normal view switch. Note that if your
application does not include a delete function, you do not need a confirmation screen.

Confirmation Screen in GAF Instances

Most GAF applications use a final confirmation step at the end of the roadmap. This
confirmation step informs the user that the action he has just executed has been
completed successfully. The configuration of the FPM_GAF_COMPONENT explicitly
supports such a use case.

Adding and Configuring the Confirmation Screen

To add a Confirmation Screen to your application, perform the following steps:

1. Start the FPM Configuration Editor of your application component and open
the Component Configuration screen.

2. In the control region, choose Add Confirmation Screen . You can then
select the radio buttons in the hierarchy to move between the Confirmation
Screen and other screens in your application.

You display the confirmation screen in OIF applications by pressing the
standard DELETE button during run-time. This raises the event
IF_FPM_CONSTANTS=>GC_EVENT-DELETE_CURRENT_OBJECT. You can also
raise this event within your application-specific code:

 Syntax
1. data: lo_fpm type ref to if_fpm
2. lo_fpm = cl_fpm_factory=>get_instance()
3. lo_fpm->raise_event_by_id(IF_FPM_CONSTANTS=>GC_EVENT-

DELETE_CURRENT_OBJECT)

FPM Event Loop

In Web Dynpro ABAP programming, a user interaction is reflected by a Web Dynpro
action. If you require a user interaction to affect not only a local component but other
components in the application too, the Web Dynpro action must be transferred to an
FPM event.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 47

This FPM event then passes through an FPM phase model (Event Loop) which is
integrated into the Web Dynpro phase model. Within the FPM event loop all involved
components can participate in the processing of the event.

If the FPM event results in another screen assembly (for example, navigation to
another step in a GAF application or the selection of another view or sub view in an
OIF application), the FPM handles this itself; there is no need for the application to
fire plugs or similar.

Activities

Raising Standard Events

In a floorplan-based application, most events are triggered when a user chooses Next
or Previous (in a GAF instance) or when switching from one view to another (in an
OIF instance). For these interactions, the FPM automatically initiates the FPM event
loop. Furthermore, these standard events are handled generically by the FPM.

However, there are scenarios where a standard event needs to be triggered from
within an application-specific UIBB e.g. by-passing the initial screen if all necessary
start-up parameters have been provided as URL parameters.

Each FPM event is represented at runtime by an instance of the class CL_FPM_EVENT.
This class encapsulates all information (including the ID and additional, optional
parameters) which is needed to execute the event.

Triggering the FPM Event Loop

To trigger an FPM event loop, you complete the following two steps:

1. Create an instance of CL_FPM_EVENT with the appropriate attributes. For all the
standard event IDs, there are constants available in the IF_FPM_CONSTANTS
interface.

2. Raise the event by calling the method IF_FPM~RAISE_EVENT and passing on
the instance of CL_FPM_EVENT.

 Note

When an event requires no additional parameters, other than the event ID, the FPM
offers an additional method RAISE_EVENT_BY_ID. This makes Step 1 above obsolete.
In this case, raise the FPM event as detailed in the sample code below:

 Syntax
1. data lo_fpm type ref to if_fpm
2. lo_fpm = cl_fpm_factory=>get_instance()
3. lo_fpm->raise_event_by_id(IF_FPM_CONSTANTS=>GC_EVENT-

LEAVE_INITIAL_SCREEN)

Since it is unknown whether the event can be executed successfully or not at the point
the event is raised, do not enter code after the call to RAISE_EVENT[_BY_ID].

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 48

Triggering Application-Specific Events

To raise an application-specific event, follow the same rules as described in
Triggering the Event Loop. The only difference is that the FPM, since it does not
know the semantics of the event, does not perform specific actions for this event.
However, the processing of the event is identical, in that all involved components
participate in the event loop in the same way as with ‘standard events’ (see Reacting
to Framework Events).

The following code provides an example of triggering an application-specific event
(including event parameters):

 Syntax
1. data: lo_fpm type ref to if_fpm,
2. lo_event type ref to cl_fpm_event.
3. create object lo_event
4. exporting
5. iv_event_id = 'DELETE_AIRPORT'.
6. lo_event->mo_event_data->set_value(
7. iv_key = 'AIRPORT_ID'
8. iv_value = lv_airport_id).
9. lo_fpm = cl_fpm_factory=>get_instance().
10. lo_fpm->raise_event(io_event = lo_event).

Reacting to Framework Events

The FPM event loop is integrated into the Web Dynpro phase model, as the following
figure shows:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 49

Key Web Dynpro Methods

The following Web Dynpro methods are important in FPM applications:

Method Method Description

DOINIT

A standard Web Dynpro method that is called only once in the
lifetime of a Web Dynpro component by the Web Dynpro
runtime. This method is used to initialize your component, e.g.
initialize attributes and create helper classes).

DOBEFOREACTION

A standard Web Dynpro method that is called by the Web Dynpro
runtime on all visible UIBBs when the user triggers a round trip.
According to Web Dynpro programming guidelines, generic
validations must be handled in this method; e.g. check that all
mandatory fields are filled.

Action handler
(ONACTION…)

The registered Web Dynpro action handler is called. You then
have two options:

If the user interaction does not affect other UIBBs, and
there is no need for FPM features such as data-loss dialog
boxes, you can handle the action locally in your UIBB.
Use standard Web Dynpro programming; e.g. selection of
another radio-button leads to different enabled/disabled
settings of other controls on the same view.

However, for all actions which may affect other UIBBs,
raise an FPM event.

Different Categories of Web Dynpro Interfaces

Regarding the behavior of instantiating the Web Dynpro components and their
participation within the FPM event loop, the Web Dynpro interfaces provided by the
FPM can be divided into two categories:

Category 1

More than one Web Dynpro component implements this Web Dynpro
interface. Those which do may have more than one instance and the instances
may only participate in a part of the FPM event loops during the application’s
lifetime.

The following Web Dynpro interfaces belong to this category:

o IF_FPM_UI_BUILDING_BLOCK

o IF_FPM_TRANSACTION, IF_FPM_WORK_PROTECTION

o IF_FPM_RESOURCE_MANAGER

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 50

Category 2

Only one Web Dynpro component implements this Web Dynpro interface.
The corresponding Web Dynpro component has only one instance which
participates at all FPM event loops that happen during the application’s
lifetime.

The following Web Dynpro interfaces belong to this category:

o IF_FPM_APP_CONTROLLER

o IF_FPM_SHARED_DATA

o IF_FPM_OIF_CONF_EXIT (or IF_FPM_GAF_CONF_EXIT)

Generic User Interface Building Block (GUIBB)

You can user Floorplan Manager to compile application-specific views (UIBBs) from
one or more applications that were realized as Web Dynpro components into new
Floorplan Manager applications. These views generally include the majority of actual
applications. Since the views were previously created using the Web Dynpro ABAP
foundation, there generally was a high level of variance in the display and
navigational behavior of the views. These views cannot be configured in Floorplan
Manager.

By introducing generic user interface building blocks, Floorplan Manager has made it
possible to improve the uniformity of application-specific views. Generic user
interface building blocks are design templates for which, at design time, the
application defines the data to be displayed along with a configuration. The concrete
display of the data on the user interface is not determined and generated by the
GUIBB until runtime. This is done automatically using the configuration provided.

Floorplan Manager provides the following generic user interface building blocks:

Form component (Web Dynpro component: FPM_FORM_UIBB)

List component (Web Dynpro component: FPM_LIST_UIBB)

Tabbed component (Web Dynpro component: FPM_TABBED_UIBB)

Feeder Classes

A class that implements the IF_FPM_GUIBB_FORM interface (for form components) or
the IF_FPM_GUIBB_LIST interface (for list components) and provides all necessary
application-specific information to the GUIBB.

Structure

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 51

Using the GET_DEFINITION method, the class defines the field catalog of the
component and supplies the component at runtime with data from the application
using the GET_DATA method.

Features

Feeder class implementations are based on a predefined interface definition providing
all necessary methods and corresponding signatures in order to standardize the
communication between the application and the GUIBB.

This communication embraces the following:

Application definition (e.g. data definition, structure or table definitions and
their technical aspects)

Default layout information and corresponding field dependencies

The (optional) action definition based on metadata

The action/event handling and data forwarding to the underlying application
model

Form Component (GUIBB FORM)

A generic design template for displaying data in a form that is implemented using the
Web Dynpro component FPM_FORM_UIBB.

You use this design template in application-specific views (UIBB) where you want to
display data using a form. You can determine the concrete display of the data in a
form when configuring the Web Dynpro component FPM_FORM_UIBB.

Structure

A FORM is comprised of various subobjects:

ELEMENT

Elements are descriptor/field combinations that can be configured for the
display type of the field or descriptors.

MELTINGGROUP

A melting group is a group of multiple fields.

TOOLBAR

Contains buttons that can have actions assigned to them and can be executed
in the form.

GROUP

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 52

A group consists of elements, melting groups, and toolbars. You can enter a
separate name and group type for each group. The following group types are
possible:

o Fullscreen width with one column

o Fullscreen width with two columns

o Half screen width with one column

 Note

Only one element or melting group can be displayed per line in a
column.

 Note

The information that can be displayed on a form is determined by the feeder class
assigned to the configuration of the Web Dynpro component FPM_FORM_UIBB .

Integration

You can configure a form component using the Form Editor for Floorplan Manager.

IF_FPM_GUIBB_FORM Interface

The following tables describe the methods (and their attributes) of the
IF_FPM_GUIBB_FORM interface.

If your application does not need a particular method, implement an empty method,
otherwise the system will dump.

 Note

You must implement the following methods:

GET_DEFINITION

GET_DATA

Methods

GET_DEFINITION: Allows the feeder to provide all necessary information for
configuring a form: the list of available fields and their properties and the list of
actions (FPM events).

Parameter Description

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 53

GET_DEFINITION: Allows the feeder to provide all necessary information for
configuring a form: the list of available fields and their properties and the list of
actions (FPM events).

Parameter Description

EO_FIELD_CATALOG

Is of type CL_ABAP_STRUCTDESCR. The components of this
object are the available fields. The simplest way to provide
a field catalog is to create a flat DDIC structure containing
all fields and then get the field catalog via

eo_field_catalog ?=
CL_ABAP_STRUCTDESCR=>describe_by_name(<name>)

 Note

The form GUIBB supports only flat structures. When using
deep structures, only the highest level fields are available.

ET_FIELD_DESCRIPTION
Here you can provide the additional information needed to
create the form, e.g. Label_by_DDIC, LABEL_REF

ET_ACTION_DEFINITION A list of all actions (which will be transformed to FPM
Events at runtime) that you can assign to form elements.

ET_SPECIAL_GROUPS

Here you have the same options that you have in the ABAP
ALV (see function module REUSE_ALV_GRID_DISPLAY) to
group the fields within your field catalogue. You must enter
the special group for each field in the field description table
in field SP_GROUP. At design-time the FPM Configuration
Editor groups the fields. This is an easier way to find fields
if your field catalogue contains many fields.

GET_PARAMETER_LIST: Called at design time and allows you to define a list of the
parameters that the feeder class supports. This list is used by the FPM
Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR
Is returned from this method. It describes which parameter
is possible. In Field TYPE, the DDIC type needs to be
entered.

INITIALIZE: Called at runtime when the form is created. It is the first feeder
method which is called from FPM.

Parameter Description

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 54

INITIALIZE: Called at runtime when the form is created. It is the first feeder
method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the values for
them specified in the configuration.

FLUSH: The first feeder method which is called during an event loop. Whenever
an FPM event is triggered (this includes all round trips caused by the form itself)
this method is called. Use it to forward changed form data to other components
in the same application.

Parameter Description

IT_CHANGE_LOG Lists all changes made by the user.

IS_DATA Is a structure containing the changed data

PROCESS_EVENT: Called within the FPM event loop, it forwards the FPM
PROCESS_EVENT to the feeder class. Here the event processing can take place
and this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT The FPM event which is to be processed

EV_RESULT

The result of the event processing. There are 3 possible values:

ev_result = if_fpm_constants=>gc_event_result-OK

ev_result = if_fpm_constants=>gc_event_result-
FAILED.

ev_result = if_fpm_constants=>gc_event_result-
DEFER

ET_MESSAGES A list of messages which shall be displayed in the message region.

GET_DATA: Called within the FPM event loop and forwards the FPM
PROCESS_BEFORE_OUTPUT event to the feeder class. Here you specify the form data
after the event has been processed.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IT_SELECTED_FIELDS The list of fields necessary for the form rendering.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 55

GET_DATA: Called within the FPM event loop and forwards the FPM
PROCESS_BEFORE_OUTPUT event to the feeder class. Here you specify the form data
after the event has been processed.

Parameter Description

Provide only the data for the fields listed in this table; all
other fields are neither visible at runtime nor used as
reference for visible fields.

ET_MESSAGES A list of messages which shall be displayed in the
message area.

EV_DATA_CHANGED

For performance reasons, the GUIBB adjusts the data in
the form only if the data has been changed. To indicate
this, set this flag whenever you change the data to be
displayed within this feeder.

EV_FIELD_USAGE_CHANGED

Indicates whether or not the field usage has been
changed by this method. If you change the field usage
without setting this flag to ‘X’, your changes are
ignored.

EV_ACTION_USAGE_CHANGED

Indicates whether or not the action usage has been
changed. Use an ‘X’ to indicate whether you changed
the action usage. If you do not, your changes are
ignored.

CS_DATA The form data to be changed.

CT_FIELD_USAGE

Field usage to change. The field usage consists of the
field attributes which might change at runtime (e.g.
enabled, visible, etc.)

 Note

If you change the fixed values of a field, set the flag
FIXED_VALUES_CHANGED for this field.

CT_ACTION_USAGE

Action usage to change. The action usage consists of the
attributes related to actions which might change at
runtime. For example, visibility. If an action is rendered
as a button, then the visibility setting of the button is
defined here.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 56

GET_DEFAULT_CONFIG: Call this if you want to have a default configuration. Use it
to call pre-configured form configurations when a user starts the FPM
Configuration Editor. This avoids the user, who uses a feeder class to create a
form, having to create it from the beginning.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object provides
the API to create a default configuration.

CHECK_CONFIG: Call this if you want to make your own application-specific
checks on the configuration in the FPM Configuration Editor immediately
before saving.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object provides
the API to read the configuration to be saved.

ET_MESSAGES A list of messages which shall be displayed in the message
region.

Form Editor for Floorplan Manager

You use the form editor to adjust a form in an application to your specific business
requirements. This is done by configuring form components.

Features

The form editor consists of the following work areas:

Preview

In the preview, all form elements from the current configuration are displayed
so as to give you a picture of the layout of the form.

Hierarchy

All form elements (groups, melting groups, and elements) are displayed in the
hierarchy.

Attribute view

Attributes of the currently selected form element that can be changed using the
form editor are displayed in the attribute view.

Action area

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 57

The action area contains links to all the actions you can execute for the form
component. The actions that can be selected depend on the concrete
configuration of the form. This means that it can differ within a configuration.

The form editor provides you with the following actions:

Add Group

Add Melting Group

Edit Feeder Class

Edit Parameters

Configure Toolbar

Configure Group

The form editor provides you with the following functions for editing a group:

Change Group Attributes

The group name, group type, and index can be changed.

Add New Group

Add Melting Group

Add Element

You can select a field from the field catalog and determine the label text and
display type.

Delete Group

The form editor provides you with the following functions for editing a melting
group:

Add Group Element

You can select a field from the field catalog. Fields are configured in more
detail by changing the group element attributes.

Change Group Element Attributes

The display type, visibility of the label, label text, and index can be changed.
Any other group element attributes that can be changed depend on the display
type.

Delete Group Element

The form editor provides you with the following functions for editing a toolbar:

Add Button

Change Button

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 58

Delete Button

The form editor is launched in a separate browser window. You can launch the form
editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a form component.

The form editor launches from the configuration editor for Floorplan Manager
automatically when you launch the configuration of an application-specific view
(UIBB) that uses the FPM_FORM_UIBB Web Dynpro component.

Add Form

At any time, you can add a new form as an additional, application-specific view to a
Floorplan Manager application. Depending on the floorplan and the application-
specific views already embedded, you can position a new form as a form component
in one of the following ways:

in a subview of an object instance

in a main step of a guided activity

in a substep of a guided activity

in a tabbed component in a master UIBB

in a tabbed component in a tab UIBB

Prerequisites

If you would like to add a new form, you must assign a feeder class to the form. This
feeder class must exist in the system.

Procedure

Substep A: Calling up the configuration editor of Floorplan Manager

1. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

2. On the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute .

The Web Dynpro application is launched in a separate browser window.

3. In this window, go to the application's identification region and choose the
Adapt Configuration link.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 59

4. In the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

5. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

Substep B: Adding a Form

1. In the preview, select the place where you would like to add the new form.

2. If no UIBB has been defined for a subview or step, choose Attributes.

3. If a UIBB has already been assigned, choose Add UIBB in the action area.

Now specify the UIBB as a form component by entering the following values
in the attribute view:

1. In the Component field, enter FPM_FORM_UIBB.

2. In the View field, enter FORM_WINDOW.

3. In the Configuration Name field, enter a name for the form component
configuration.

 Note

Although the Configuration Name field is not marked as a required
entry, it is necessary to enter a name here. Otherwise, the Configure
UIBB action is not activated.

The Configuration Type, Configuration Variant, and Sequence Order are
optional.

4. Choose Save.

The system has entered the form component as a new UIBB with the name
UIBB: FORM_WINDOW.

Substep C: Configuring the Form

1. ChooseConfigure UIBB.

2. In the Editor for Web Dynpro ABAP Components — Configuration screen,
choose Create.

3. In the Create Configuration dialog window, enter a description and choose a
package.

4. Choose OK.

5. In the Edit Feeder Class dialog window, enter the feeder class that you would
like to assign the new form to.

 Note

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 60

You can search for a feeder class here.

To do this, choose the input help in the Edit Feeder Class window. The system
opens the Select Feeder Class IF_FPM_GUIBB_FORM dialog window. You
can search for a feeder class here. Choose Start Search. The system lists all
feeder classes for the IF_FPM_GUIBB_FORM Webdynpro interface. Select a
feeder class and choose OK. The system copies the feeder class into the
Feeder Class field.

6. Choose Edit Parameters.

7. In the Edit Parameters window, you can choose a value for the feeder class
parameters.

8. Choose OK.

Result

The system opens the form editor for the new form.

List Component (GUIBB LIST)

A generic design template for displaying data in a list that is implemented using the
Web Dynpro component FPM_LIST_UIBB.

You use this design template in application-specific views (UIBB) where you want to
display data using a list. You can determine the concrete display of the data in a list
when configuring the Web Dynpro component FPM_LIST_UIBB.

Structure

A list consists of a number of columns. The component-definied view gives you the
opportunity to specify:

Which data is displayed in which columns.

Which display type (such as display field or input field) is used in which
column.

Which order the columns are arranged in.

The number of columns and rows that can be displayed in the view at one
time.

 Note

The data of a list that can be displayed is determined by the feeder class that is
assigned to the configuration of the Web Dynpro component FPM_LIST_UIBB .

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 61

Integration

You can configure a list component using the List Editor for Floorplan Manager.

IF_FPM_GUIBB_LIST Interface

The following tables describe the methods (and their attributes) of the
IF_FPM_GUIBB_LIST interface.

If your application does not need a particular method, implement an empty method,
otherwise the system will dump.

 Note

You must implement the following methods:

GET_DEFINITION

GET_DATA

Methods

GET_DEFINITION: Allows the feeder to provide all necessary information for
configuring a list: the list of available fields and their properties and the list of
actions (FPM events).

Parameter Description

EO_FIELD_CATALOG

Is of type CL_ABAP_STRUCTDESCR. The components of this
object are the available fields. The simplest way to provide a
field catalog is to create a flat DDIC structure containing all
fields and then get the field catalog via

eo_field_catalog ?=
CL_ABAP_STRUCTDESCR=>describe_by_name(<name>)

 Note

The list GUIBB supports only flat structures. When using
deep structures, only the highest level fields are available.

ET_FIELD_DESCRIPTION
Here you can provide the additional information needed to
create the list, e.g. Label_by_DDIC, LABEL_REF.

ET_ACTION_DEFINITION A list of all actions (which will be transformed to FPM
events at runtime) that you can assign to list elements.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 62

GET_DEFINITION: Allows the feeder to provide all necessary information for
configuring a list: the list of available fields and their properties and the list of
actions (FPM events).

Parameter Description

ET_SPECIAL_GROUPS

Here you have the same options that you have in the ABAP
ALV (see function module REUSE_ALV_GRID_DISPLAY) to
group the fields within your field catalogue. You must enter
the special group for each field in the field description table
in field SP_GROUP. At design-time the FPM Configuration
Editor groups the fields. This is an easier way to find fields
if your field catalogue contains many fields.

GET_PARAMETER_LIST: Called at design time and allows you to define a list of the
parameters that the feeder class supports. This list is used by the FPM
Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR
Is returned from this method. It describes which parameter
is possible. In Field TYPE, the DDIC type needs to be
entered.

INITIALIZE: Called at runtime when the list is created. It is the first feeder
method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the values for them
specified in the configuration.

FLUSH: The first feeder method which is called during an event loop. Whenever
an FPM event is triggered this method is called (this includes all round trips
caused by the list itself). Use it to forward changed list data to other components
in the same application.

Parameter Description

IT_CHANGE_LOG Lists all changes made by the user.

IS_DATA Is a structure containing the changed data.

PROCESS_EVENT: Called within the FPM event loop and forwards the FPM
PROCESS_EVENT to the feeder class. Here the event processing can take place and
this is where the event can be canceled or deferred.

Parameter Description

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 63

PROCESS_EVENT: Called within the FPM event loop and forwards the FPM
PROCESS_EVENT to the feeder class. Here the event processing can take place and
this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT The FPM event which is to be processed.

EV_RESULT

The result of the event processing. There are 3 possible values:

ev_result = if_fpm_constants=>gc_event_result-OK

ev_result = if_fpm_constants=>gc_event_result-
FAILED.

ev_result = if_fpm_constants=>gc_event_result-
DEFER

ET_MESSAGES A list of messages which shall be displayed in the message region.

GET_DATA: Called within the FPM event loop, it forwards the FPM
PROCESS_BEFORE_OUTPUT event to the feeder class. Here you specify the list data
after the event has been processed.

Parameter Description

IO_EVENT The FPM event which is to be processed

IT_SELECTED_FIELDS

The list of fields necessary for the list rendering. Provide
only the data for the fields listed in this table; all other
fields are neither visible at runtime nor used as reference
for visible fields.

ET_MESSAGES A list of messages which shall be displayed in the
message area.

EV_DATA_CHANGED

For performance reasons, the GUIBB adjusts the data in
the list only if the data has been changed. To indicate
this, set this flag whenever you change the data to be
displayed within this feeder.

EV_FIELD_USAGE_CHANGED

Indicates whether or not the field usage has been
changed by this method. If you change the field usage
without setting this flag to ‘X’, your changes are
ignored.

EV_ACTION_USAGE_CHANGED

Indicates whether or not the action usage has been
changed. Use an ‘X’ to indicate whether you changed
the action usage. If you do not, your changes are
ignored.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 64

GET_DATA: Called within the FPM event loop, it forwards the FPM
PROCESS_BEFORE_OUTPUT event to the feeder class. Here you specify the list data
after the event has been processed.

Parameter Description

CS_DATA The list data to be changed.

CT_FIELD_USAGE

Field usage to change. The field usage consists of the
field attributes which might change at runtime (e.g.
enabled or disabled, visible or invisible, mandatory or
optional, read-only or edit). Use it to control the
properties of columns.

 Note

If you change the fixed values of a field, set the flag
FIXED_VALUES_CHANGED for this field.

CT_ACTION_USAGE

Action usage to change. The action usage consists of the
attributes related to actions which might change at
runtime (e.g. enabled or disabled, visible or invisible,
mandatory or optional, read-only or edit). Use it to
control the properties of toolbars. If an action is
rendered as a button, the visibility setting (for example)
of the button is defined here.

 Note

Regarding columns, note that it is possible to assign the attributes for
CT_FIELD_USAGE and CT_ACTION_USAGE either to single cells or to whole columns
(with the exception of visibility, which can be applied only to whole columns).

If you want to set these attributes for the whole column, use the corresponding fields
in the field_usage structure.

If you would like to set these attributes for single cells, proceed as follows:

1. Create a new column for the table (add a field to the field catalog in the
GET_DEFINITION method).

2. Define the column as a technical column that is not visible at runtime, by
setting the field technical_field to ‘X’. This column contains the properties
of the cells.

3. In the GET_DEFINITION method, adjust the field description accordingly. For
example, you have a column A and you want to set the property Read_only
for single cells in that column. For this reason you created a technical column
B. In the field description, set read_only_ref to B.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 65

GET_DEFAULT_CONFIG: Call this if you want to have a default configuration. Use it
to call pre-configured list configurations when a user starts the FPM
Configuration Editor. This avoids the user, who uses a feeder class to create a
list, having to create it again from the beginning.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_LIST_CONFIG: This object provides
the API to create a default configuration.

CHECK_CONFIG: Call this if you want to make your own application-specific
checks on the configuration in the FPM Configuration Editor immediately
before saving.

Parameter Description

IO_LAYOUT_CONFIG Oof type IF_FPM_GUIBB_LIST_CONFIG: This object provides
the API to read the configuration to be saved.

ET_MESSAGES A list of messages which shall be displayed in the message
region.

List Editor for Floorplan Manager

You use the list editor to adjust a list within an application to you specific business
requirements. This is done by configuring list components.

Features

The list editor consists of the following work areas:

Preview

In the preview, the list in the current configuration is displayed so as to give
you a picture of the layout of the list.

Hierarchy

All list elements (columns, toolbar, and parameters) are displayed in the
hierarchy as a tree structure.

Attribute view

Attributes of the currently selected list element that can be changed using the
list editor are displayed in the attribute view.

Action area

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 66

The action area contains links to all the actions you can execute for the list
component. Which actions can be selected depends on the concrete
configuration of the list. This means that the selection of actions can differ
within a configuration.

The list editor provides you with the following actions:

Edit Feeder Class

Edit Parameters

Configure Column

Configure Toolbar

The form editor provides you with the following functions for editing a column:

Add Column

You can select a field from the field catalog and determine the column header
and display type.

Delete Column

The list editor is launched in a separate browser window. You can launch the list
editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a list component.

The list editor launches from the configuration editor for Floorplan Manager
automatically when you launch the configuration of an application-specific view
(UIBB) that uses the FPM_LIST_UIBB Web Dynpro component.

Add List

You can add an additional, application-specific view to a Floorplan Manager
application at any time in the form of a new list. Depending on the floorplan and the
application-specific views already embedded, you can position a new list component
in one of the following ways:

in a subview of an object instance

in a main step of a guided activity

in a substep of a guided activity

in a tabbed component in a master UIBB

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 67

in a tabbed component in a tab UIBB

Prerequisites

If you would like to add a new form, you must assign a feeder class to the form. This
feeder class must first be created and programmed.

Procedure

Substep A: Calling up the configuration editor of Floorplan Manager

1. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

2. On the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute .

The Web Dynpro application is launched in a separate browser window.

3. In this window, go to the application's identification region and choose the
Adapt Configuration link.

4. In the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

5. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

Substep B: Adding a List

1. In the preview, select the place where you would like to add a new list.

2. If no UIBB has been defined for a subview or step, choose Attributes.

3. If a UIBB has already been assigned, choose Add UIBB in the action area.

Now specify the UIBB as a list component by entering the following values in
the attribute view:

1. In the Component field, enter FPM_LIST_UIBB.

2. In the View field, enter LIST_WINDOW.

3. In the Configuration Name field, enter a name for the list component
configuration.

 Note

Although the Configuration Name field is not marked as a required
entry, it is necessary to enter a name here. Otherwise, the Configure
UIBB action is not activated.

The Configuration Type, Configuration Variant, and Sequence Order are
optional.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 68

4. Choose Save.

The system has entered the list component as a new UIBB with the name
UIBB: LIST_WINDOW.

Substep C: Configuring the List

1. ChooseConfigure UIBB.

2. In the Editor for Web Dynpro ABAP Components — Configuration screen,
choose Create.

3. In the Create Configuration dialog window, enter a description and choose a
package.

4. Choose OK.

5. In the Edit Feeder Class dialog window, enter the feeder class that you would
like to assign the new list to.

 Note

You can search for a feeder class here.

To do this, choose the input help in the Edit Feeder Class window. The system
opens the Select Feeder Class IF_FPM_GUIBB_LIST dialog window. You
can search for a feeder class here. Choose Start Search. The system lists all
feeder classes for the IF_FPM_GUIBB_LIST Webdynpro interface. Select a
feeder class and choose OK. The system copies the feeder class into the
ObjectTypeName field.

6. Choose Edit Parameters.

7. In the Edit Parameters window, you can choose a value for the feeder class
parameters.

8. Choose OK.

Result

The system opens the list editor for the new list.

Additional Information on the List Component

The following information is useful when configuring a List Component.

Attributes

In the hierarchy of the Component Configuration of your application, the following
attribute is available for the List Component:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 69

Lead Selection Action Assignment: You can assign an FPM event ID to the
lead selection here. If a lead selection occurs during runtime, the assigned
FPM event is raised. If you assign no event ID, the generic event ID
IF_FPM_GUIBB_LIST=>GC_FPM_EVENT_ON_LEAD_SEL is assigned.

In the hierarchy of the Component Configuration of your List Component, choose
Settings to display the following attributes:

Column count: Determines the amount of columns that are displayed at
runtime

Row count: Determines the amount of rows that are displayed at runtime

Selection Event: Like a Web Dynpro table, the List Component offers two
kinds of selection at runtime:

o Lead selection (the user uses the left mouse button to select one single
row)

o Normal selection (the user uses the right mouse button to select one or
more rows)

Using this dropdown list box, you can determine what kind of selection
raises an FPM event. The default is a Lead Selection.

Selection Mode: Determines whether it is possible to select multiple rows

Selection behavior: Determines whether currently selected rows are de-
selected when the user makes a new selection

FPM Events and the List Component

As the List Component is itself an FPM UIBB, it takes part, when it is visible, in each
FPM event loop. The List Component may also raise FPM events itself. These events
are raised from the following three sources:

Cell events

The columns may contain fields that have a display type that are capable of
raising an event (for example, a button display type). All cell-based events
have the FPM event ID
IF_FPM_GUIBB_LIST=>GC_GUIBB_LIST_ON_CELL_ACTION. The corresponding
row and column values are added as event parameters to this FPM event
IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_ROW and
IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_COLUMN_NAME.

Toolbar events

Almost each toolbar element may raise an FPM event. In this case, the event
ID is the action ID (which was defined by the feeder class in method
get_definition). Some toolbar elements may contain specific values of interest
(i.e. e. user inputs), such as the toggle button, the input field and the dropdown
list box. To get these values, you may read the following FPM event
parameters IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_TOGGLE_STATE (for the

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 70

toggle button), IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_INPUT_VALUE (for the
input field) or IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_DROP_DOWN_KEY (for the
dropdown list box).

Selection events

A row selection may also raise an FPM event. It is possible to choose whether
only a lead selection raises an FPM event or also a normal selection (see
configuration settings for details).

Tabbed Component (GUIBB TABBED COMPONENT)

A generic design template for organizing additional application-specific views
(UIBB) as tabs that is implemented using the Web Dynpro component
FPM_TABBED_UIBB.

You use this design template for an application-specific view (UIBB) For example,
you could use the template where you want to simultaneously display a selection list
of business objects and the additional details of those business objects in tabs without
changing the view. You can determine the concrete arrangement of the selection list,
detail views, and data when configuring the Web Dynpro component
FPM_TABBED_UIBB.

Structure

A tabbed component consists of two areas: the MASTER area and the TAB area, which
can be arranged next to or on top of one another. If you arrange the areas horizontally,
the master area is placed to the left of the tab area. If you arrange the areas vertically,
the master area is placed above the tab area.

The content of the master area and the content of the tabs are determented by separate
Web Dynpro components, which you set when configuring the Web Dynpro
component FPM_TABBED_UIBB.

 Note

If you do not set the Web Dynpro component for the master area, this area is not
displayed in the application. Instead, only the tabs appear with their application-
specific views.

Tabbed Component Editor for Floorplan Manager

You use this editor to adjust a tabbed component within an application to you specific
business requirements. This is done by configuring the component.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 71

Features

The editor consists of the following work areas:

Preview

In the preview, all application-specific views (UIBBs) from the current
configuration are displayed so as to give you a picture of the layout of the
tabbed component.

Layout

In this area, you determine whether the tabbed component should be arranged
horizontally or vertically.

Hierarchy

All application-specific views (UIBBs) are displayed in the hierarchy as a tree
structure.

Attribute view

Attributes of the currently selected application-specific view (UIBB) that can
be changed using the editor are displayed in the attribute view.

Action area

The action area contains links to all the actions you can execute for the tabbed
component.

The editor for a tabbed component provides you with the following actions:

Add Master Component (technical name: MASTER UIBB)

Add Tab (technical name: TAB)

Add Application-Specific View to Tab (technical name: TAB UIBB)

The editor for a tabbed component is launched in a separate browser window. You
can launch the editor in change or display mode and save your changes at any time.

 Note

The component-defined processing view is pre-set. Make sure that this view is
selected before configuring a tabbed component.

The editor for a tabbed component launches from the configuration editor for
Floorplan Manager automatically when you launch the configuration of an
application-specific view (UIBB) that has the FPM_TABBED_UIBB Web Dynpro
component.

Add Tabbed Component

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 72

You can add an additional, application-specific view to a Floorplan Manager
application at any time in the form of a new tabbed component. Depending on the
floorplan and the application-specific views already embedded, you can position a
new Tabbed Component in one of the following ways:

in a subview of an object instance

in a main step of a guided activity

in a substep of a guided activity

in a tabbed component in a master UIBB

in a tabbed component in a tab UIBB

Procedure

Substep A: Calling up the configuration editor of Floorplan Manager

1. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

2. In the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute in Administrator Mode

.

The Web Dynpro application is launched in a separate browser window.

3. In this window, go to the application's identification region and choose the
Adapt Configuration link.

4. In the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

5. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

Substep B: Adding a Tabbed Component

1. In the preview, select the place where you would like to add a new tabbed
component.

2. If no UIBB has been defined for a subview or step, choose Attributes.

3. If a UIBB has already been assigned, choose Add UIBB in the action area.

Now specify the UIBB as a tabbed component by entering the following
values in the attribute view:

1. In the Component field, enter FPM_TABBED_UIBB.

2. In the View field, enter TABBED_WINDOW.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 73

3. In the Configuration Name field, enter a name for the tabbed
component configuration.

 Note

Although the Configuration Name field is not marked as a required
entry, it is necessary to enter a name here. Otherwise, the Configure
UIBB action is not activated.

The Configuration Type, Configuration Variant, and Sequence Order are
optional.

4. Choose Save.

The system has entered the tabbed component as a new UIBB with the name
UIBB: TABBED_WINDOW.

Substep C: Configuring the Tabbed Component

1. ChooseConfigure UIBB.

2. In the Editor for Web Dynpro ABAP Components — Configuration screen,
choose Create.

3. In the Create Configuration dialog window, enter a description and choose a
package.

4. Choose OK.

Result

The system opens the editor for tabbed components. In the preview, a tab is displayed
that the system has generated.

Changing the Tabbed Component Dynamically at Runtime

You may rename, add and remove tabs or child-UIBBs (or embedded UIBBs) from
your tabbed component during runtime.

To do so, proceed as follows:

1. Choose an application-specific Web Dynpro component and add the Web
Dynpro interface IF_FPM_TABBED_CONF_EXIT to the Implemented Interfaces
tab of your Web Dynpro component. This is one of the Web Dynpro
components that provide you with a child UIBB.

2. Save and activate the newly added interface.

Example: Somewhere in your code you want to rename a tab. To do this, you
must raise your own FPM event (e. g. CHANGE_TAB_NAME) as the sample code
below shows:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 74

 Syntax
1. DATA: lo_fpm TYPE REF TO if_fpm,
2. lo_event TYPE REF TO cl_fpm_event.
3. lo_fpm = cl_fpm=>get_instance().
4. lo_event = cl_fpm_event=>create_by_id(

'CHANGE_TAB_NAME').
5. lo_event->mo_event_data->set_value(iv_key = 'ID'
6. lo_event->mo_event_data->set_value(iv_key =

'NAME'
7. iv_value =

lv_tab_name).
8. lo_fpm->raise_event(io_event = lo_event).

3. In the component controller, implement the method
OVERRIDE_CONFIG_TABBED. To continue with the above example of renaming
a tab, implement the following sample code:

 Syntax
1. CASE io_tabbed->mo_event->mv_event_id.
2. WHEN 'CHANGE_TAB_NAME'.
3. DATA lv_name TYPE string.
4. DATA lv_id TYPE string.
5. io_tabbed->mo_event->mo_event_data->get_value(

EXPORTING iv_key = 'ID'
6.

IMPORTING ev_value = lv_id).
7. io_tabbed->mo_event->mo_event_data->get_value(

EXPORTING iv_key = 'NAME'
8.

IMPORTING ev_value = lv_name).
9. io_tabbed->rename_tab(iv_tab_id = lv_id
10. iv_new_name = lv_name).

Navigation

To navigate to a specific application outside of your FPM application, you use the
following FPM toolbar menus:

You Can Also

Related Links

These FPM toolbar menus utilize launchpads.

Navigation APIs

The FPM also provides you with the following two navigation interfaces, allowing
you to control the launchpads:

IF_FPM_NAVIGATION: Use this to navigate to an application using a given
launchpad.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 75

IF_FPM_NAVIGATE_TO: Use this to navigate to an application without
using a launchpad.

Suspend and Resume

From Enhancement Package 1 of NW onwards, the Suspend and Resume feature is
available for FPM applications. This can be described briefly as a feature in which the
Web Dynpro application, built within the FPM framework, can be placed in a
suspended state whilst the user navigates to another URL. The user can work on the
URL and then navigate back to the suspended FPM application, which is resumed
from exactly the same state before navigation occurred.

Note that the usage of a report launchpad is mandatory to enable suspend and resume
for FPM applications.

For a detailed explanation of this feature, see Suspend and Resume.

Launchpad

A collection of navigation destinations that are stored as a separate technical object in
the system.

You use a launchpad to allow users to navigate to specific goals outside of the current
Floorplan Manager application. For example, this could mean navigating to other
Web Dynpro ABAP applications, external Web pages, transactions, reports, or other
business objects. Within a floorplan, two elements, YouCanAlso and RelatedLinks,
are available to you in the toolbar. You can assign different launchpads to these
elements.

 Note

The launchpad is displayed as a dropdown list. Descriptions that you have written for
launchpad applications cannot be displayed in Floorplan Manager.

YouCanAlso and RelatedLinks are default toolbar elements of the SAP user
interface design for floorplans. They are displayed as links. In the concrete Floorplan
Manager application, both elements can have different names on the user interface.
This name can also be changed using the configuration editor.

Structure

Any number of applications can be assigned to a launchpad. Each application is
described by its application type as well as additional attributes that are dependent on
the application type. In a Floorplan Manager application, not every application type
can be called up in every portal. The following table describes which application
types can be called up in which portal.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 76

Application Type
SAP
Enterprise
Portal

SAP NetWeaver
Business Client (Portal
Roles)

SAP NetWeaver
Business Client (PFCG
Roles)

Portal Pages Yes Yes No

Transactions Yes Yes Yes

Report Writer Yes Yes Yes

URL Yes Yes Yes

SAP BI Report
(Query) Yes Yes No

SAP BI Report
(Web Template) Yes Yes No

BI Report Yes Yes No

BEx Analyzer Yes Yes Yes

Manager's Desktop Yes Yes Yes

Web Dynpro Java Yes Yes No

Web Dynpro
ABAP Yes Yes Yes

KM Document Yes Yes No

Visual Composer
xApps Yes Yes No

Info Set Query Yes Yes Yes

Object-Based
Navigation Yes Yes Yes

Multiple folders can be created for every launchpad. You can use these folders to
group applications.

 Note

As opposed to the conventional use of launchpads in portals, in Floorplan Manager,
only those navigation destinations are shown that were created as applications in the
first folder of the launchpad. The applications in the other folders of the launchpad are
hidden in the display.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 77

Create a Launchpad with Applications

Procedure

To create a lauchpad, complete the following steps:

1. On the SAP Easy Access screen, enter /nlpd_cust in the command field.

2. Choose Continue.

The system calls up the start screen for Launchpad Customizing.

3. On the Overview of Launchpads screen, choose New Launchpad.

4. In the dialog box, enter a role name, an instance name, and a description.

5. Choose Continue.

6. On the Change Launchpad Role: <name of role> Instance: <name of
instance>, choose New Application.

7. Enter the data for the linktext.

 Note

You can write a description for the application. However, Floorplan Manager
cannot display this description in the dropdown list.

8. Choose an application type.

9. Enter the information for the selected application type.

10. Choose Save.

To add multiple applications, repeat steps 6 through 9.

 Recommendation

For launchpads to which you would like to assign an application, we
recommend that you do not use a folder. This is because Floorplan Manager
can currently only display one folder. If the launchpad consists of multiple
folders, only the topmost folder is displayed.

Include a Launchpad in the User Interface

Procedure

To assign a launchpad to the YouCanAlso or RelatedLink elements on the user
interface, complete the following steps.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 78

1. Select a Web Dynpro application and application component.

2. Select a Web Dynpro application configuration in the Object Navigator of the
ABAP Workbench.

3. On the Web Dynpro Explorer: Display Web Dynpro Configuration screen,
choose Web Dynpro Configuration Test Execute in Administrator Mode

.

The Web Dynpro application is launched in a separate browser window.

4. In this window, go to the application's identification region and choose the
Adapt Configuration link.

5. On the Editor for Web Dynpro ABAP Components — Customizing screen,
choose Change.

6. On the Component Customizing <application name> screen, make sure that
the Component-Defined view is on.

7. In the navigation area of the configuration editor, choose the Toolbar element.

8. Choose Expand Node.

9. To display the attributes of the YouCanAlso element, click the YouCanAlso
pushbutton.

If you would like to assign the launchpad to the RelatedLinks element,
choose the RelatedLinks element.

10. In the Role field, enter the name of the launchpad role.

11. In the Instance field, enter the name of the launchpad instance.

12. To change the name of the button element, enter a different name in the Name
field.

13. Save the configuration.

14. Test the new configuration.

Working in the Navigation Customizing

General Settings

You can make changes to a launchpad that are valid for all destinations and
applications in a launchpad. To do this, proceed as follows:

1. Choose transaction LPD_CUST.

2. Locate and open your launchpad.

3. On the menu bar, choose Extras General Settings .

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 79

4. In the Change Launchpad Role dialog box you can set the following options:

o OBN Navigation Mode

User Set of Roles: An Object Based Navigation (OBN) target
can be assigned to any roles that are assigned to a user.

Source Role: The navigation target must be assigned to the
same role as the application that uses the launchpad.

o The BI Access Type (defines the data source used by a BI application)

BI System Default: Tthe data source is determined by the BI
system itself.

Access to replicated data: The data source is the BI system.

Direct access to operative data: The data source is an ECC
system.

o Check Application Alias is Unique

Use this to check that a destination application alias being used by an
FPM application is unique

Source Parameters and Parameter Mapping

To support parameter mapping, you can define a set of parameters that are known by
the FPM application that uses the launchpad. To do this, proceed as follows:

To do this, proceed as follows:

1. Choose transaction LPD_CUST.

2. Locate and open your launchpad.

3. On the menu bar, choose Extras Source Parameters . The Default
Parameters dialog box displays the parameters which are known by your FPM
application.

4. Some application categories (e.g. Web Dynpro ABAP) have a button
Parameter Mapping in the Parameter input field. To map your parameters,
choose this button to extend the Default Parameter dialog box and enter the
following data:

o Parameter: Enter the parameter name that the FPM application sends
to the destination application.

o Replaced by: Enter the parameter name that the destination application
expects to receive. When you launch the destination application, the
launchpad automatically replaces the parameter that was sent by the
FPM application by the parameter in the Replaced by column.

Copying an entire Launchpad

To copy an entire launchpad, proceed as follows:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 80

1. Choose transaction LPD_CUST.

2. On the menu bar of the Overview of Launchpads screen, choose Launchpad
Read from other system by RFC .

3. In the Action Launchpad dialog box, enter an RFC destination. This displays a
list of launchpads available in the system and client you have entered as the
RFC destination. Note: If you leave RFC-Destination empty, you are provided
with a list of all launchpads in your current client.

4. Choose Continue.

5. Choose the launchpad that you want to copy and choose Continue.

6. In the dialog box that appears, enter another role and/or instance. Choose
Continue.

Copying Applications from one Launchpad to another Launchpad

For convenience, you can copy one or more applications inside a launchpad to another
launchpad. To do this, proceed as follows:

1. Choose transaction LPD_CUST.

2. Choose New Launchpad.

3. In the dialog box, enter the Role, Instance and Description. Choose Continue.

4. Choose Copy from other Launchpad. A dialog box appears, listing all the
launchpads in the current system and client.

5. Choose a Launchpad and choose Continue.

6. In the navigation area, your chosen launchpad appears next to your new
launchpad. Click and drag the launchpad destination applications from your
chosen launchpad to your new launchpad. Note that you can also drag an
entire folder to a new launchpad.

7. Save your entry.

Performing Searches in Launchpads of a Client

1. You can perform searches covering all launchpads in a system and client. To
do this, proceed as follows:

2. To initialize a search, run the report APB_LPD_UPDATE_SEARCH_TABLE. This
report analyzes all launchpads in a system and client, and displays the
information in a search table.

3. In the Launchpad Customizing, Change Launchpad Role screen, choose
Search.

4. You are provided with a list containing all applications of all launchpads in the
current client. You can now perform searches throughout the whole list and
select the appropriate applications or launchpads.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 81

5. Choose OK to display a selected application in the navigation area.

Re-Displaying a SAP-Delivered Launchpad

You can make changes to a particular launchpad and save the changes. However, it is
still possible to display the SAP-delivered launchpad. To do this, proceed as follows:

1. Choose transaction LPD_CUST.

2. Open the launchpad which you have made changes to.

3. Choose Extras Show SAP Version . In the navigation area, the SAP-
delivered launchpad (without the changes) appears alongside the changed
version of the launchpad.

Transporting a Launchpad

To transport a launchpad, proceed as follows:

1. Choose transaction LPD_CUST.

2. Open the launchpad you want to transport in change mode.

3. Choose Launchpad Transport .

4. In the dialog box, enter the package to which you want to assign the texts that
you created in the launchpad. As a result, the texts are also forwarded to
translation. Choose Continue.

5. In the dialog box, enter a Customizing request and choose Continue. This
request includes the relevant table entries for the following tables:

o APB_LAUNCHPADT

o APB_LAUNCHPAD_V

o APB_LPD_CONTROL

o APB_LPD_OTR_KEYS

o APB_LPD_VERSIONS

6. In the dialog box, enter a Workbench request. This request includes the texts
from the launchpad. These are objects of the type R3TR DOCT.

7. Release both requests.

IF_FPM_NAVIGATION API (Runtime class
CL_FPM_NAVIGATION)

This navigation interface provides you with a list, MT_TARGETS, with all customized
applications of a given launchpad.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 82

To access this Navigation API, use the interface IF_FPM. This provides the
GET_NAVIGATIONmethod, which returns an instance of the Navigation API,
IF_FPM_NAVIGATION.

Tables and Domains

Table: MT_TARGETS

Parameters Type
kind Type Description

entry_type Type FPM_NAVIGATION_TARGET_TYPE
entry_type Type
FPM_NAVIGATION_TARGET_TYPE
Type of application.

parent Type STRING GUID of the parent folder or
initial.

key Type STRING Key Type String GUID of
application.

alias Type STRING
A (unique) identifier for an
application. It is defined in the
customizing of the launchpad.

text Type TEXT255 Text of the link.

description Type STRING Description.

icon_path Type STRING Path to an icon.

enable Type BOOLE_D
Determines if an application is
active/enabled or
inactive/disabled.

visible Type BOOLE_D Determines the visibility of an
application

Domain: FPM_NAVIGATION_TARGET_TYPE

ID Description

APP Line contains an application.

FOL Line contains a folder.

SEP Line contains a separator.

Methods

This navigation interface provides the methods described in the tables below:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 83

NAVIGATE: Starts the navigation of an application.

Parameters Direction Type kind Type Description

IV_TARGET_KEY importing Type STRING GUID of Application.

MODIFY: Changes attributes of an application. For example, you can change the
visibility of an application, enable or disable an application and change its
description and text.

Parameters Direction Type
kind Type Description

IV_VISIBLE importing Type BOOLE_D Set an application to
visible/invisible.

IV_ENABLE importing Type BOOLE_D Enable/disable an application.

IV_TEXT importing Type STRING An alternative text for the
application.

IV_DESCRIPTION importing Type STRING An alternative description for
the application.

IV_TARGET_KEY importing Type STRING GUID of Application.

IV_NOTIFY importing Type BOOLE_D Invokes notification on all
registered nodes / objects.

SET_FILTER: Allows you to remove some applications from the list of applications
that the launchpad provides.

Parameters Direction Type
kind Type Description

IT_Filter importing Type T_FILTER GUIDs of application that must not be
provided in the list of application.

MODIFY_PARAMETERS: Changes the values of existing parameters or adds a
parameter if none exists.

Parameters Direction Type
kind Type Description

ID_TARGET_KEY importing Type STRING GUID of
Application.

IT_APPLICATION_PARAMETER importing Type APB_LPD_T_PARAMS Contains
application

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 84

MODIFY_PARAMETERS: Changes the values of existing parameters or adds a
parameter if none exists.

Parameters Direction Type
kind Type Description

parameters
that will be
added or
changed.

IT_BUSINESS_PARAMETER importing Type APB_LPD_T_PARAMS

Contains
business
parameters
that will be
added or
changed.

ADD_BEX_ANALYZER: Adds an application of type BEx Analyzer to a given
launchpad.

Parameters Direction Type
kind Type Description

IV_PARENT_FOLDER_ID importing Type FPM_APPLICATION_ID

GUID of
parent
folder. If
the
parameter is
empty, the
application
will be
added at top
level.

IS_BEX_ANALYZER_FIELDS importing Type FPM_S_BEX_ANALYZER

Structure
that
contains the
fields to add
with BEx
Analyzer
application
type.

EV_APPLICATION_ID exporting Type FPM_APPLICATION_ID GUID of
Application.

ET_MESSAGES exporting Type FPM_T_T100_MESSAGES Error
messages.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 85

ADD_BEX_ANALYZER: Adds an application of type BEx Analyzer to a given
launchpad.

Parameters Direction Type
kind Type Description

EV_ERROR exporting Type BOOLE_D

Status =
false - the
application
was added;
Status =
true - an
error
occurred.

The following are other methods with a similar interface to ADD_BEX_ANALYZER,
which allow you to add a specified application, at runtime, to a launchpad:

ADD_URL

ADD_TRANSACTION

ADD_REPORT_WRITER

ADD_OBN

ADD_INFOSET_QUERY

ADD_FOLDER

ADD_BI_ENTERPRISE_REPORT

ADD_BI_QUERY

ADD_BI_TEMPLATE

ADD_KM_DOCUMENT

ADD_PORTAL_PAGE

ADD_VISUAL_COMPOSER

ADD_WEBDYNPRO_ABAP

ADD_WEBDYNPRO_JAVA

REMOVE: Removes an application from a launchpad.

Parameters Direction Type kind Type Description

ID_APPLICATION_ID importing Type STRING GUID of Application.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 86

Integration: Navigation in the Event Loop

If you call the IF_FPM_NAVIGATION method NAVIGATE, a new event object of type
cl_fpm_navigation_event is created. This event object contains all the application
parameters. The interface IF_FPM_UI_BUILDING_BLOCK contains the PROCESS_EVENT
method, which allows you to call the navigation event and change these parameters.

To do this, implement the following code in the PROCESS_EVENT method:

 Syntax
1. "First check if the event is a navigation event"
2. check io_event->MV_EVENT_ID = io_event->gc_event_navigate.
3. "Make a cast from the event object to the

cl_fpm_navigation_event object"
4. DATA lr_event type ref to cl_fpm_navigation_event.
5. lr_event ?= io_event.
6. "Get the business parameter"
7. lr_bus_parameter ?= lr_event->mo_event_data.
8. "Get the launcher parameter"
9. lr_launcher_parameter ?= lr_event->mo_launcher_data.

Note the use of the following lr_parameter methods:

to_lpparam: provides you with an internal table with the parameters

get_value, set_value or delete_value: allow you to change a parameter

 Note

If the event processing requires further user interaction (for example,. requesting
further data via a dialog box), the event processing can be deferred by returning
EV_RETURN = IF_FPM_CONSTANTS~GC_EVENT_RESULT-DEFER.

If the result of the event processing is ok, you can return EV_RETURN =

IF_FPM_CONSTANTS~GC_EVENT_RESULT-OK; if the result of the event processing is not
ok, you can return EV_RETURN = IF_FPM_CONSTANTS~GC_EVENT_RESULT-FAILED

 Note

To prevent a loss of data, you can implement the NEEDS_CONFIRMATION method. This
method is located in the interface IF_FPM_UI_BUILDING_BLOCK. This method
contains the navigation event and you can decide whether to raise a data-loss dialog
box. To do this, you must return the following value: eo_confirmation_request =
cl_fpm_confirmation_request=>go_data_loss.

IF_FPM_NAVIGATE_TO API

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 87

This interface provides you with a set of methods to launch an application without
using a launchpad.

To access this Navigation API, use the interface IF_FPM. This provides the method
GET_NAVIGATE_TO() which returns an instance of the Navigation API
IF_FPM_NAVIGATE_TO.

Methods

This interface contains the methods described in the table below and the following
bullet points:

LAUNCH_BEX_ANALYZER: Launches an application of type BEx Analyzer.

Parameters: Direction Type
kind Type Description

IS_BEX_ANALYZER_FIELDS importing Type FPM_S_BEX_ANALYZER

Structure that
contains the
fields to add
with BEx
Analyzer
application
type.

ET_MESSAGES exporting Type FPM_T_T100_MESSAGES Error messages

EV_ERROR exporting Type BOOLE_D

Status: false -
the application
was added; true
- an error
occurred

The following are other methods with a similar interface to LAUNCH_BEX_ANALYZER,
which allow you to launch a specified application:

LAUNCH_URL

LAUNCH_TRANSACTION

LAUNCH_REPORT_WRITER

LAUNCH_OBN

LAUNCH_INFOSET_QUERY

LAUNCH_FOLDER

LAUNCH_BI_ENTERPRISE_REPORT

LAUNCH_BI_QUERY

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 88

LAUNCH_BI_TEMPLATE

LAUNCH_KM_DOCUMENT

LAUNCH_PORTAL_PAGE

LAUNCH_VISUAL_COMPOSER

LAUNCH_WEBDYNPRO_ABAP

LAUNCH_WEBDYNPRO_JAVA

Suspend and Resume

The Suspend and Resume feature enables an FPM application to remain in a
suspended state when a user navigates to a URL. When the user navigates back to the
FPM application, the Suspend and Resume feature allows the application to be
resumed in the exact state it was before navigation occurred.

The basic settings to utilize this feature include the time out of suspended
applications. Session Management and the Suspend and Resume feature are provided
by technology layers like Web Dynpro ABAP Foundation, Portal, ABAP Server etc
and are not provided or influenced by FPM. Suspend and Resume is supported in the
following client environments:

Stand-alone

NWBC

Portal

 Note

Suspend and Resume is currently limited to URL navigation. In the Report
Launchpad Customizing, Suspend and Resume is only available for the URL
application category of Report Launchpads. The same is also applicable to the API, in
that only dynamic navigation to URLs via APIs can utilize the Suspend and Resume
methods.

There is a uniform method to enable both Suspend and Resume across all the clients.
But the method in which the external URLs get the information to navigate back to
the Web Dynpro application varies. Only the FPM’s methods to suspend and resume
are detailed here.

With the Suspend and Resume feature, it is possible to pass parameters back and forth
to the URL from the FPM application.

Procedure

Suspending via Static Launchpad Customizing

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 89

1. Open the Launchpad Customizing (transaction LPD_CUST).

2. On the Overview of Launchpads screen, choose New Launchpad.

3. Enter the Role, Instance and Description. Choose Continue.

4. On the Change Launchpad Role screen, choose New Application.

5. Enter the following details:

o Linktext – for example FPM_TEST

o Application Category – choose URL

o Application Parameters - enter the URL of the application to be
opened on suspension of the FPM application.

Note that you can also enter a description and application alias. The
application alias is recommended if you use APIs of the launchpad.

6. Check the Activate Suspend and Resume Funtionality checkbox.

When the user uses this launchpad application to navigate away from the FPM
application, the FPM application is suspended.

Suspending via Launchpad API

It is possible from EhP1 of NW onwards to also use navigation dynamically, that is
without creating a launchpad Customizing. It is possible to enable Suspend and
Resume for such navigation too.

For information on how to get a handle to IF_FPM_NAVIGATE_TO, see Navigation.

Once a handle is obtained to the IF_FPM_NAVIGATE_TO object, you can call the
method LAUNCH_URL to open external applications. This method takes in an input
parameter IS_URL_FIELDS of type FPM_S_LAUNCH_URL. In the structure
FPM_S_LAUNCH_URL, the field USE_SUSPEND_RESUME must be set to abap_true or ‘X’.
When the application is launched (refer to Dynamic APIs of the launchpad), the FPM
application is suspended.

Resuming a Suspended Application

When the user wants to navigate from the external URL back to the suspended FPM
application, the FPM event loop is triggered. This is the entry point back into the
application.

The application reacts to the FPM event FPM_RESUME, which is accessed via the
constant CL_FPM_EVENT=> GC_EVENT_RESUME. The event data will contain the URL
parameters that are passed from the external URL back into the FPM application.

The key to access this is via the following key parameter:
CL_FPM_SUSPEND_RESUME_UTILITY=>CO_RESUME_URL_PARAMETERS. The value
obtained is an internal table of the type TIHTTPNVP, containing the URL key-values
pair passed by the external application. Note that this data is available only during the

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 90

lifetime of the event object and is not stored by FPM. The application maintains a
copy if the user needs to access this information later.

Sample code to resume an application is shown below (in the Component Controller's
PROCESS_EVENT method):

 Syntax
1. METHOD PROCESS_EVENT .
2. "We will need to check the Navigation mode and set it to

the launch pad accordingly.
3. DATA lr_event TYPE REF TO cl_fpm_navigation_event.
4. "Check if this is the resume event.
5. CASE io_event->mv_event_id.
6. WHEN cl_fpm_event=>gc_event_resume.
7. get_resume_parameters(io_event).
8. ENDCASE.
9. Method GET_RESUME_PARAMETERS
10. DATA: lr_fpm_event_data TYPE REF TO if_fpm_parameter.
11. DATA: it_url_parameters TYPE tihttpnvp.
12. lr_fpm_event_data = io_event->mo_event_data.
13. CALL METHOD lr_fpm_event_data->get_value
14. EXPORTING
15. iv_key =

cl_fpm_suspend_resume_utility=>co_resume_url_parameters
16. IMPORTING
17. ev_value = it_url_parameters.

At the end of this code, the internal table it_url_parameters contains the URL
parameters passed back from the external application. The above mentioned code,
along with other information, can be found in the test application
FPM_TEST_SUSPEND_RESUME in the APB_FPM_TEST package.

Handling Dialog Boxes

Depending on the action required, you can manage dialog boxes in the following
ways:

Using the NEEDS_CONFIRMATION method during the FPM Event Loop

Using the PROCESS_EVENT method for the handling of application-specific
dialog boxes

Using the work-protect mode offered by the Portal and the NWBC (using the
IF_FPM_WORK_PROTECTION interface)

Triggering a Data-Loss Dialog Box in the FPM Event Loop

Each UIBB can request a data-loss dialog box during the FPM event loop.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 91

To do this, return the pre-defined instance of the class
CL_FPM_CONFIRMATION_REQUEST as detailed below:

 Syntax
1. METHOD needs_confirmation
2. IF …
3. eo_confirmation_request =

cl_fpm_confirmation_request=>go_data_loss
4. ENDIF
5. ENDMETHOD

To display other confirmation dialog boxes, create your own instance of the class
CL_FPM_CONFIRMATION_REQUEST and add your own application-specific text.

Handling Application-Specific Dialog Boxes

To process an event in method IF_FPM_UI_BUILDING_BLOCK~PROCESS_EVENT (see
chapter FPM Events), it may be necessary to gather additional information from the
user by means of a dialog box. Dialog boxes may contain simple text and buttons, but
they may also be more complex and include input fields, checkboxes, etc.

The processing of dialog boxes in Web Dynpro programming can be cumbersome,
since Web Dynpro dialog boxes cannot be processed in a synchronous way (i.e.
trigger the dialog box, wait for it to be closed and continue processing). This means
that the UIBB would need to return the result of the event processing (OK or
FAILED) before the dialog box could be processed.

To achieve synchronous dialog box handling, the FPM allows you to defer the
processing of the event loop and resume it after the dialog box has been processed.
This procedure is described below:

Procedure

Deferring current event processing

You defer the processing of the current event in the method PROCESS_EVENT.
Sample code for this is shown below:

 Syntax
1. ev_result = if_fpm_constants=>gc_event_result-defer.

Registering a dialog box

This procedure is purely Web Dynpro ABAP and not a feature of the FPM. Therefore,
we recommend that you read the Web Dynpro ABAP documentation regarding Web
Dynpro ABAP dialog boxes in general. Nevertheless, a short description of how to
register a dialog box is detailed below:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 92

Firstly, the registration of the dialog box with Web Dynpro needs to be triggered in
the method PROCESS_EVENT, as this is the last method until program control returns to
the FPM.

However, for an application-specific dialog box you need your own Web Dynpro
ABAP View and the registration of the dialog box is only possible from within this
View. For this reason, in the method PROCESS_EVENT you need to call a method of the
View that is used for the application-specific dialog box. However, as View methods
cannot be accessed from within methods of the component controller, you need to use
the Web Dynpro ABAP event mechanism: raise an event in the method
PROCESS_EVENT and register an event handler on the corresponding View.

The process for this is described below:

1. Create a new Web Dynpro ABAP View and name it DIALOG BOX_CARRIER.

2. In the Component Controller, create a new Web Dynpro ABAP Event and
name it REGISTER_DIALOG BOX_EVENT.

3. In the method PROCESS_EVENT raise the Web Dynpro ABAP Event
REGISTER_DIALOG BOX_EVENT.

4. In the View DIALOG BOX_CARRIER, create a new method and name it
REGISTER_DIALOG BOX of method type event handler for the event
REGISTER_DIALOG BOX_EVENT.

5. In the method REGISTER_DIALOG BOX, use the ABAP Window API to create a
dialog box, register action handler methods to the buttons of the dialog box
and register the dialog box for opening.

6. Create Web Dynpro ABAP actions and handler methods for the actions that
arise from the dialog box; in this case, from the Yes and No buttons. In the
example above, the names are ONRESUME_EVT_OK and ONRESUME_EVT_FAILED.

The sample code below shows how this might look (the code uses a standard dialog
box with buttons Yes and No):

 Syntax
1. DATA: lo_api TYPE REF TO if_Web

Dynpro_component,
2. lo_window_manager TYPE REF TO if_Web

Dynpro_window_manager,
3. lo_view_api TYPE REF TO if_Web

Dynpro_view_controller,
4. lo_dialog box TYPE REF TO if_Web Dynpro_window,
5. lo_api = Web Dynpro_comp_controller->Web

Dynpro_get_api().
6. lo_window_manager = lo_api->get_window_manager().
7. lo_view_api = Web Dynpro_this->Web Dynpro_get_api().
8. lo_dialog box = lo_window_manager->create_dialog

box_to_confirm(
9. text = 'some dialog box text... '
10. button_kind = if_Web Dynpro_window=>co_buttons_yesno
11. message_type = if_Web

Dynpro_window=>co_msg_type_question

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 93

12. window_title = 'some dialog box title...'
13. window_position = if_Web Dynpro_window=>co_center).
14. CALL METHOD lo_dialog box->subscribe_to_button_event
15. EXPORTING
16. button = if_Web Dynpro_window=>co_button_yes
17. action_name = 'ONRESUME_EVT_OK'
18. action_view = lo_view_api.
19. CALL METHOD lo_dialog box->subscribe_to_button_event
20. EXPORTING
21. button = if_Web Dynpro_window=>co_button_no
22. action_name = 'ONRESUME_EVT_FAILED'
23. action_view = lo_view_api.
24. lo_dialog box->open().

Resuming the event

Once the required user input has been obtained, the frozen FPM event is continued
(either receiving the result OKor FAILED). To do this, call the FPM method
RESUME_EVENT_PROCESSING within the action handler methods for the buttons of the
dialog box. The sample code below shows how this might look:

 Syntax
1. DATA lo_fpm TYPE REF TO if_fpm.
2. lo_fpm = cl_fpm_factory=>get_instance().
3. lo_fpm->resume_event_processing(

if_fpm_constants=>gc_event_result-ok).

After the event is resumed, the remaining UIBBs are processed (if there is more than
one UIBB).

The figure below summarizes the behavior described above :

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 94

WD runtime CL_FPM
UIBB

requiring interaction
in processEvent

UIBBs
without interaction in

processEvent

onAction

Action

start event loop

Web Dynpro methods
FPM methods

Display popup

Process_Event

standard event loop
(ommitted)

Register popup and
button actions

return ‚DEFER’

Popup button
pressed

On_Action _Popup_Button

Resume_Event_Processing(‚OK’ | ‚FAILED’)

standard event loop
(ommitted)

Process_Event

Process_Event

1st par t of event processing

2nd part of event processing

interupt event loop and
remember current state

restore the previous state
and resume event loop

Close popup

IF_FPM_WORK_PROTECTION Interface

The FPM allows the application to make use of the “work-protect mode” offered by
the Portal and the NWBC (that is, to display a data-loss dialog box when the user
closes the application without first saving the data).

To achieve this, the application must ‘tell’ the FPM whether it contains unsaved
(“dirty”) data. For this, the FPM provides the Web Dynpro Interface
IF_FPM_WORK_PROTECTION. It contains only one method, which is described in the
table below:

METHODS

Method
Name Method Description

IS_DIRTY

This interface can be implemented by any Web Dynpro component in your
application which is known to the FPM (e.g. any UIBB or a shared-data
component). At runtime, the FPM will detect all components
implementing this interface. If any of these components signals unsaved
data, then the application is marked as ‘dirty’. This application ‘dirty-state’
is then passed on by the FPM to the shell (i.e. the portal or the NWBC).

 Note

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 95

The shell-API requires this information as soon as the application state changes.
Therefore, the IF_FPM_WORK_PROTECTION~IS_DIRTY method is called by the FPM
runtime during each roundtrip. Therefore, it needs to perform this very quickly. Note
that the FPM does not necessarily call the method IS_DIRTY on all UIBBs that are
currently visible. As soon as one UIBB informs the FPM that it has unsaved data, the
FPM does not need to call the method on the remaining visible UIBBs. For this
reason, do not assume that the IS_DIRTY method is called by the FPM on all visible
UIBBs.

Your application can use the sample code shown below:

 Syntax
1. METHOD is_dirty.
2. if * component contains unsaved data
3. ev_dirty = abap_true.
4. else.
5. ev_dirty = abap_false.
6. endif.
7. ENDMETHOD.

FPM Message Management

FPM message management is an integral part of FPM and is available to all
applications that use the standard floorplans. It guarantees consistent and guideline-
compliant message handling.

Integration

Prerequisites

Features

FPM message management consists of two parts:

IF_FPM_MESSAGE_MANAGER Interface (Message Manager)

This interface provides you with methods to perform the following tasks:

o Clear messages

o Raise Exceptions

o Report messages

Message Region

All messages to be reported are displayed in the Message Region. This UI
element is included in all FPM applications.

You can make the following changes to the Message Region in the Global
Settings dialog box:

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 96

o Set the maximum message size

When the application displays your messages, the message area
expands to accommodate the number of messages that you enter in the
Maximum Message Size field. Once the number of messages exceeds
the maximum limit, a scroll bar appears in the message area. Thus you
can view messages other than those immediately visible in the message
area.

o Turn on the message log

You can produce a log of the messages for your application. When the
message log is turned on, all the previously reported messages can be
seen. When a message is to be reported, the Display Message Log link
appears in the Message Region. Note that this link appears only when
there is at least one message in the log.

 Note

Note: You can also turn on the message log by using the URL
parameter FPM_SHOW_MESSAGE_LOG=X. However, if you turn on the
message log in the Global Settings dialog box, you cannot turn it off
using the URL parameter.

Activities

More Information

Using the FPM Message Manager

Procedure

1. In the Component Controller of your Web Dynpro Component, choose the
Attributes tab.

2. Declare an attribute of the component globally (e.g. MR_MESSAGE_MANAGER)
and declare the Associated Type as type IF_FPM_MESSAGE_MANAGER.

3. Choose the Attributes tab of your Component Controller. In the Web Dynpro
DOINIT method, create a handle to the FPM Message Manager (which is a
read-only attribute in the IF_FPM interface), as detailed in the code below:

 Syntax
1. Method Web Dynpro DOINIT
2. "Get the handle to the IF_FPM interface
3. Web Dynpro_this->MR_FPM = CL_FPM_FACTORY=>GET_INSTANCE()
4. Web Dynpro_this->MR_MESSAGE_MANAGER = Web Dynpro_this-

>MR_FPM->MO_MESSAGE_MANAGER
5. Endmethod

Example

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 97

T100 based message. This example is taken from the demo applications and can be
found in the Web Dynpro component FPM_HELLOSFLIGHT_OIF_DEMO in the
APB_FPM_DEMO package.

 Syntax
1. CALL METHOD Web Dynpro_THIS->MR_MESSAGE_MANAGER-

>REPORT_T100_MESSAGE
2. EXPORTING
3. IV_MSGID = 'APB_FPM_DEMO'
4. IV_MSGNO = 009
5. IO_COMPONENT = Web Dynpro_this
6. IV_SEVERITY =

if_fpm_message_manager=>GC_SEVERITY_ERROR
7. IV_LIFETIME =

if_fpm_message_manager=>GC_LIFE_VISIBILITY_AUTOMATIC
8. IV_PARAMETER_1 = lv_carrid_string
9. IO_ELEMENT = lo_el_sflight_selection
10. IV_ATTRIBUTE_NAME = `CARRID`.

The T100 message is shown below:

INSERT SCREENSHOT HERE

When the message appears in the Message Region, the parameter &1 is replaced by
the actual flight name.

IF_FPM_MESSAGE_MANAGER Interface

This programming interface provides you with methods for controlling message
management in your FPM application in a logical manner.

It provides you with methods to perform the following tasks:

Reporting messages

There are 3 methods available to report messages (including T100 and
Bapiret2 messages).

Raising exceptions

There are 4 methods available to raise exception messages (including T100
and Bapiret2 messages).

Clearing messages

There are 1 method available to clear all messages.

Methods for Reporting Messages

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 98

The methods for reporting messages are provided by the IF_FPM_MESSAGE_MANAGER
interface. This interface provides the following methods for reporting messages:

REPORT_MESSAGE

REPORT_BAPIRET2_MESSAGE

REPORT_T100_MESSAGE

Note the following information relating to all reporting methods:

By default, the message is not mapped to a context element.

If there are minor inconsistencies while reporting the message, FPM
automatically takes alternative action (unless an exception is raised). The
following is the alternative action that FPM takes: If the message is reported
to be bound to a context element and if the element or the attribute is missing,
FPM reports the message without the binding.

FPM raises an exception in the following cases:

o If the message lifetime is marked to be bound to a controller, but the
controller is NULL or not reachable.

o If the component for the message is missing.

o If the Message Lifetime is set to Manual and View, but the element or
attribute is missing.

Attributes

The attributes of the three methods for reporting messages are described in the table
below.

Parameter Relevant Method Description

IO_COMPONENT All

Passes an object reference to the message
manager. This object reference is used to
store the message. Preferably, the Web
Dynpro component, which raises the
message, must be passed here. You can
pass another object reference only in the
event of exceptions where the object
raising the message does not have a handle
to the Web Dynpro component (e.g. an
ABAP OO class) This is important for
those messages whose lifetime is
maintained manually by the application.
(see IV_LIFETIME). When you create a
message whose lifetime is manual, the
application creating such a message must
then delete the message once it is no
longer needed. In this case, you must pass
the component whose messages need to be

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 99

Parameter Relevant Method Description

cleared. This helps to prevent messages
from a different component being cleared
by a component that has not raised them.
This could happen when you re-use
components from different areas

IV_SEVERITY All

The severity of the message to be reported.
There are three possible values, as follows:

Error (E)

Warning (W)

Success (I)

The default value is Error. These messages
affect the navigation in different ways for
each floorplan. Thus, navigation relating to
an error message in a GAF application,
may be different to navigation relating to
an error message in an OIF application.
The following three values can be passed:

GC_SEVERITY_ERROR for Error

GC_SEVERITY_WARNING for
Warning

GC_SEVERITY_SUCCESS for Success

This is an optional parameter. The default
is Error.

IV_LIFETIME All

Determines when, where and how long a
message appears for. This is a very
important parameter and must be given
special attention. This parameter is a
combination of the following two
elements:

Lifetime: Determines how long the
message exists in the message area,
i.e. the creation and deletion of the
message. The available lifetimes
are:

o automatic: FPM handles the
destruction of the message
as defined by the UI
guidelines for the floorplan

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 100

Parameter Relevant Method Description

o manual:the application
developer handles the
deletion of the message
from the message area.

Visibility: Determines when the
message appears in the message
area. The following values apply:

o Automatic: FPM takes care
of the visibility based on the
UI guidelines

o View: the message is visible
as long as the view to which
the message is bound is
available

o Controller: the message is
visible as long as the
controller that has raised the
message is available (see
the parameter controller
IO_ Controller for details)

o Application: the message is
permanently displayed
(until it is deleted manually
by the application
developer) and is visible
whilst the application is
running.

o Pop-up: the message is
visible only in a dialog box.

The default values for both Lifetime and
Visibility are Automatic. Not all
combinations of lifetime and visibility are
possible. Some combinations, e.g. Lifetime
= Manual + Visibility = Pop-up are not
available. The permitted combinations are
as follows (showing the constant to be
used - Lifetime + Visibility):

GC_LIFE_VISIBILITY_AUTOMATIC:
Automatic + Automatic (Fully
handled by FPM)

GC_LIFE_VISIBILITY_AUT_DIALO

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 101

Parameter Relevant Method Description

G BOX: Automatic + Pop-up
(Creation and destruction handled
by FPM; visible as long as the
dialog box is visible)

GC_LIFE_VISIBILITY_MANU_VIEW:
Manual + View (Should be deleted
by the application; visible until the
view that created it is visible)

GC_LIFE_VISIBILITY_MANU_CONT:
Manual + Controller (Should be
deleted by the application; visible
as long as the controller that
created it is visible)

GC_LIFE_VISIBILITY_MANU_APPL:
Manual + Application (Should be
deleted by the application; visible
as long as the application is
running)

IV_PARAMETERS All

A group of parameters of the type Web
Dynpro R_NAME_VALUE_LIST that can be
stored along with the message. This will
be passed to the Web Dynpro message
manager as is and will have no visualize
changes to the message. Refer to the Web
Dynpro message manager documentation
for further details

IR_MESSAGE_USER_DATA All

Additional data that can be stored along
with the message. This does not influence
the message visually. This parameter can
be used by the application developers to
provide error resolution mechanism. See
the Web Dynpro help for further details.

IV_MESSAGE_INDEX All

Numerical value indicating the order in
which the message is to be displayed. If no
value is passed (this is an optional
parameter), the message appears in the
order in which the Web Dynpro runtime
chooses to display it. Messages are sorted
for display, according to the following
attributes:

1. Error severity

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 102

Parameter Relevant Method Description

2. Message index (parameter
MSG_INDEX)

3. Context element (if it exists)

4. Context attribute (if it exists)

IO_ELEMENT All

A reference to a context element to which
the message is bound. The message is then
clickable and the focus shifts to a UI
element bound to this context element.

IV_ATTRIBUTE_NAME All
The element attribute to which the message
must be mapped. This parameter is used in
conjunction with the IO_ELEMENT.

IV_IS_VALIDATION
_INDEPENDENT All

Defines whether a message, referring to a
context attribute or a context element,
influences the execution of a standard
action. If the parameter’s value is
ABAP_FALSE (default value), the standard
action is no longer executed after this
message is created. However, if the
parameter’s value is ABAP_TRUE, the
standard action is executed.

IO_CONTROLLER All

Pass the reference to the controller whose
lifetime will dictate the lifetime of the
messages which have the lifetime set to the
context.

IS_NAVIGATION_ALLOWE
D All

Use this flag if you need to allow
navigation, even on an ‘E’ message in the
GAF. Relevant for GAF applications only.

IV_VIEW All

The name of the view of the dialog box.
The error is then restricted only to the
dialog box. Otherwise there is a side effect
in that the error message (if a non-
automatic type) is also reported on the
main screen when the dialog box is closed.
Relevant only if the message manager is
used in application-specific dialog boxes.

IV_MESSAGE_TEXT REPORT_MESSAGE

Any free text that must be reported in the
message area. When used with the UI
element and attribute parameters, it
becomes a clickable free text message.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 103

Parameter Relevant Method Description

IS_BAPIRET2 REPORT_BAPIRET2
_MESSAGE

The BAPIRET2 structure directly in the
message. The severity of the message is
automatically selected from the BAPIRET2
structure. The T100 message that is
embedded in the BAPIRET2 structure is
used to display the message text.
Additionally, the lifetime, visibility and
context mapping can be set along with the
BAPIRET2 structure.

Note: If the BAPIRET2 structure contains a
severity value of A, the message is
converted into an exception.

IV_MSGID REPORT_T100_MESSAG
E

Used when reporting a T100 based
message. Supply the parameter with the
message class.

IV_MSGNO REPORT_T100_MESSAG
E

The message number of the message class
specified by the IV_MSGID.

IV_PARAMETER_1
IV_PARAMETER_2
IV_PARAMETER_3
IV_PARAMETER_4

REPORT_T100_MESSAG
E Optional parameters for the message.

Mandatory Parameters

The table below shows which parameters are mandatory for each method:

Method Mandatory Parameters

REPORT_MESSAGE Message text

REPORT_T100_MESSAGE Message class and message number

REPORT_BAPIRET2_MESSAGE BAPIRET2 structure

Methods for Raising Exception Messages

The RAISE_EXCEPTION methods are provided by the IF_FPM_MESSAGE_MANAGER
interface. This interface provides the following methods for raising exceptions:

RAISE_EXCEPTION

RAISE_T100_EXCEPTION

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 104

RAISE_CX_ROOT_EXCEPTION

RAISE_BAPIRET2_EXCEPTION

All exceptions are logged into the system with the following details:

the method that was used to raise the exception

the text of the exception

additional text (if used)

From SP13 onwards, there is no recovery mechanism from the exceptions.

Attributes

The following table describes the attributes of the four RAISE_EXCEPTION methods.

Parameter Relevant Method Description

IV_TEXT RAISE_EXCEPTION

Optional text that can be passed
while raising a simple exception.
This text is logged and can later
be used for analysis

IV_MSGID RAISE_T100_EXCEPTION

Message class ID for the T100
message. Use this parameter to
raise an exception whose text is
based on the T100 message
mechanism.

IV_MSGNO RAISE_T100_EXCEPTION Message number of the T100
message class.

IV_PARAMETER_1

IV_PARAMETER_2

IV_PARAMETER_3

IV_PARAMETER_4

RAISE_T100_EXCEPTION Optional message parameters.

IO_EXCEPTION RAISE_CX_ROOT_EXCEPTION
The exception class inheriting
from CX_ROOT. This parameter is
a mandatory parameter.

IV_ADDITIONAL_TEX
T

RAISE_CX_ROOT_EXCEPTION
Additional text to be added
while reporting an exception
based on CX_ROOT.

IS_BAPIRET2 RAISE_BAPIRET2_EXCEPTIO
N

The BAPIRET2 structure for
raising an exception.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 105

Method for Clearing Messages

This method is provided by the IF_FPM_MESSAGE_MANAGER interface.

Note the following information relating to this method:

The method clears messages from the Message Region and acts upon all those
methods that have Lifetime set to Manual.

This is the only method to selectively clear those messages with a Lifetime set
to Manual from the Message Region.

This method ensures that messages from a different component are not cleared
accidentally.

The defaults for the parameters contain a negative semantic with respect to the
method name; if the method is called with defaults, all the messages are
deleted.

Attributes

The following table describes the attributes for the CLEAR_MESSAGES method.

Parameter Relevant
Method Description

IO_COMPONENT CLEAR_MESSAGE
S

The component in which messages were
previously reported. Only those messages
that were reported from this component will
be cleared. If this contains object references
other than components, then those object
references will be used. This is a mandatory
parameter.

IV_EXCLUDE_ERROR CLEAR_MESSAGE
S

Pass true if error messages belonging to the
component are not to be deleted. This is an
optional parameter and the default is false.
This means that all the error messages
belonging to this component will be deleted
unless this parameter contains a true value.
Looking at the parameter’s name, the
parameter indicates that the default value
(false) has to be overridden only if error
messages are to be saved from being cleared
and this parameter contains negative
semantic with respect to the method name.

IV_EXCLUDE_WARNIN
G

CLEAR_MESSAGE
S

Default is false. Override it with true, if
warnings raised for the component are to be

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 106

Parameter Relevant
Method Description

saved.

IV_EXCLUDE_SUCCES
S

CLEAR_MESSAGE
S

Default is false. Override it with true, if
success messages raised for the component
are to be saved.

FPM Message Manager FAQ

Can I use the Web Dynpro message manager along with the FPM message manager?

Yes. However, you create and maintain your own reference of the Web Dynpro
message manager. Messages that are reported directly into the Web Dynpro message
manager will not be maintained by FPM after they are reported and the application
must handle the message independent of the FPM lifetime and visibility functions.
Exceptions logged directly into the Web Dynpro message manager are not logged
under the FPM_RUNTIME_MESSAGES checkpoint group.

I want to use the FPM floorplan but I do not want to use the FPM message area. Can I do this?

Yes. Use the Web Dynpro message area. However, FPM message manager functions
such as automatic lifetime handling, consolidated dialog box display etc is not then
available.

Should I create a message area to use the FPM message manager?

No. If you are using a standard floorplan (e.g. OIF or GAF), the message area is a
standard part of an FPM application’s UI.

Can I change the position of the message area?

No. If you create an additional message area, the messages are repeated in both
message area views.

I reported a message mapped to a context. I see only the text and the message is not navigable.
What is happening?

The element and the attribute do not contain valid references. In such a case, FPM
still displays the message but it is not navigable.

When I raise an exception, the screen dumps. When I examine the stack I see that the
IF_FPM_MESSAGE_MANAGER is the point where the dump occurs. Why?

As of SP13 of NW 7.00 and SP03 of NW7.10, there is limited support for exception
handling for FPM applications. Features such as recovery mechanisms from
exceptions, special exception screens, etc are not available. All RAISE_XX_EXCEPTION
methods in FPM will log any exception raised from the method and then force a
dump. In this manner, the applications are terminated.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 107

Handling of Transactions

Transactions can be handled in a systematic manner in FPM by implementing the
Web Dynpro interface IF_FPM_TRANSACTION. This interface guarantees you the
following advantages:

There is a logical sequence in which the interface methods are called.

The transaction steps can be split up into the sequence in which they are
supposed to be processed.

There is a check – save – validate sequence that provides high transaction
integrity.

The check – save – fail – recover sequence provides the required robustness to
the transaction.

Using the transaction interface

1. In the Web Dynpro ABAP Workbench, select a component that will contain the
business logic to be executed on a save event. This could be any component
known to the FPM (including any UIBB or Shared Data component used by
the UIBBs of your application).

2. In the preview, choose Implemented Interfaces and, in edit mode, add the
IF_FPM_TRANSACTION interface.

3. Save your entry.

4. In the Action column, choose the Reimplement button and ensure that the icon
in the Implementation State column turns green.

5. Activate your component. In the Activation dialog box, ensure that all
elements are selected and choose Save. You have now implemented the
Transaction interface and if you open the Component Controller component,
you can see the methods associated with it on the Methods tab.

6. In any Save event, data needs to be saved to a database. This can be realized in
the following ways:

o Use a shared data component (see section on shared data for further
details).

o Use direct context binding.

o Use an assistance class.

The decision to use any or a combination of the above methods is taken by the
application developer.

FAQ

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 108

On what event will these methods be called? These methods will be invoked
by the standard FPM SAVE event.

Can I have the FPM call these methods on my own custom event? No. These
methods are called as part of the standard FPM event loop and hence will not
react to custom events.

Can I have multiple components implement this interface in the same
application? Yes. The FPM will call all the methods on all the implementing
components. But our general recommendation is to use only one central
component for transaction handling.

IF_FPM_TRANSACTION Interface

This Web Dynpro interface provides you with methods to handle transactions in a
systematic manner by FPM. This is an optional interface; an application can handle
the transactions independently, without implementing the interface.

Methods

The IF_FPM_TRANSACTION interface contains the methods described in the table
below. Note that once the interface is implemented, the FPM identifies the
corresponding component, that has the method to be called, in sequence and calls the
methods on this component in the same sequence as defined below.

Method Name Method Description

CHECK_BEFORE_SAVE

This method has a return parameter which indicates whether
the validation before a save to the database is successful. Use
this method as the trial for save, and return a true if the trial
save was successful and false if it was not.

SAVE

This method is used to perform the actual save and any
possible commit. It is called when the CHECK_BEFORE_SAVE
has returned a false (note that the semantic of the return
parameter of the CHECK_BEFORE_SAVE is negative and reads
‘rejected’. In other words, a false value for rejected means
that the CHECK_BEFORE_SAVE was successful). If there are
errors while saving, you must return rejected = true so that the
AFTER_REJECTED_SAVE can be called. If the save was indeed
successful, then the method AFTER_COMMIT is called. Refer to
the flow chart for more details.

AFTER_COMMIT
You can perform clean up activities such as releasing
database locks, releasing other resources, triggering an event
for processing after a successful commit.

AFTER_REJECTED_SAV
E

Here you can perform your roll back activities. You can also
release locks and resources.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 109

The methods are called in the sequence depicted in the figure below:

No

Allow the
application to

handle the
event internally

Call the interface methods

Yes

CHECK_BEFORE_SAVE

SAVE

Start event
processing

Exception?
Was save not
successful?

AFTER_COMMITAFTER_REJECTED_SAVE

Complete transaction event processing

NoYes

Is transaction
interface

implemented?

A detailed sequence diagram of the method calls can be found in the FPM Design
Document.

Resource Management

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 110

It is possible from NW EhP1 onwards for UIBBs to be made transient in their
behavior. Transient behavior means that UIBBs, which are not visible, can be
removed from memory so as to increase the performance and the memory footprint of
the application.

Releasing a Component

Technically, a UIBB is an interface view and this, by itself, cannot be released from
memory, hence the FPM releases the component containing the UIBB based on
certain rules. The rules are as follows:

The application must use the new schema available from EhP1 onwards.

The application developer must have set the transient flag to true via the FPM
Configuration Editor.

The FPM framework finds that it is technically feasible to release the
component.

The UIBBs implement the Resource Manager interface and do not veto the
transient decision passed by the application via the ON_HIDE method.

The UIBB has not implemented the Resource Manager interface (meaning that
it does not have the possibility to veto).

A UIBB is defined and identified by the following key: configuration + component +
interface view.

The transient behavior can be specified only during design time at the level of the
application and not at the level of a UIBB or its usage.

The transient behavior of the UIBBS can be handled in one of the following ways:

One UIBB per component

The component contains only one interface view which is used as a UIBB.
When the UIBB is removed from the view assembly, the component that
contains this UIBB is released.

Multiple UIBBs per component

The component is released only when all the interface views that behave as
UIBBs are no longer part of the view assembly, and the next set of UIBBs (for
the forthcoming view assembly) does not contain a UIBB from this
component. In such a case, the component is only released when all the
interface views of this component are no longer part of the visible view
assembly. Note that when one of the interface views (UIBBs) is removed from
the view assembly, the component remains alive if other interface views of the
same component are still part of the view assembly or part of the next view
assembly.

If the application developer has set the global flag to transient, meaning that the
UIBBs (components) can be released, then the FPM will investigate whether the
component can be released.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 111

 Note

There are instances when, even if the application developer has set the default to
transient, the component containing the UIBBs cannot be released. These instances
are described below:

The component is held as a used component by another component.

There are UIBBs from the same component that is still being displayed.

The component implements an FPM interface that does not allow it to be
released.

To evaluate whether to release a component, the FPM completes the following steps:

1. FPM checks for the presence of the Global flag in the Global Settings dialog
box in the FPM Configuration Editor. If it is not present, then it will treat all
the UIBBs for this application as non-transient and hence will not release any
components.

2. FPM reads the configuration global flag to see if the configuration is set to
transient. If the configuration is non-transient, then this information is passed
on to the UIBBs and FPM ignores the transient behavior, i.e. it does not
release the components.

3. FPM reads the configuration and sees that the global flag is set to transient.
The following options are then available:

o FPM checks if the IF_FPM_RESOURCE_MANAGER interface is
implemented by the component. If so, it proceeds to the next step.
Otherwise, it will check the technical feasibility of the component
being released and, if it is feasible, it releases it. If it is not feasible, it
retains the component.

o FPM checks whether the component containing the UIBB under
consideration is technically capable of being released (see the reasons
bulleted above) and if so, it forwards the same status to the UIBBs via
the IF_FPM_RESOURCE_MANAGER’s ON_HIDE method.

o FPM checks that the interface is implemented and that, technically, it
can be released. The same information is passed on to the UIBB. It
checks for the veto value from the UIBB. If the UIBB has not vetoed
the release state, then FPM releases it. Otherwise, it will retain it. In
either case, the ON_HIDE method of the component is called.

Settings for Transient Behaviour

Depending on how you want your application to use transient behavior, you can make
the settings described in the following table.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 112

Requirement Transient
Flag

Implement
IF_FPM_RESOUCE_MANAGER Veto

Coding with
the resource
manager to
handle
application
data

I do not want
transient behavior
for any UIBB and I
do not want to
release any
memory.

False NA NA

I do not want
transient behavior
for any UIBB but I
would like to
release some
resources.

False NA NA Yes

I want all my
UIBBs to be
transient. I do not
have the need to
release any
resources explicitly.

True NA NA NA

I want all my
UIBBs to be
transient. I want to
release some
resources explicitly.

True Yes No NA

I want only some of
the UIBBs to be
released. I would
like to retain some
due to business
logic reasons.

True Yes

Yes (only
for those
that do not
need to be
released).

Based on
need from
business
logic.

I only want some of
the UIBBs to be
released. Some
UIBBs I would like
to retain due to
business logic
reasons. For those
UIBBs that are
transient, there is no

True Only on those that need to
veto (or not be released).

Yes (only
for those
that do not
need to be
released).

NA

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 113

Requirement Transient
Flag

Implement
IF_FPM_RESOUCE_MANAGER Veto

Coding with
the resource
manager to
handle
application
data

need to release any
resources.

Setting the Transient Flag

Procedure

1. Start the FPM Configuration Editor for your application and go to the
component configuration screen.

2. Choose Change and select Global settings.

3. The Global Settings dialog box contains the field for the transient setting.

4. Use the F4 help for Transient State. For the transient behavior, choose T.

5. Save the configuration.

Result

All the UIBBs in the application are now transient.

Using IF_FPM_RESOURCE_MANAGER to Veto Release Decision

Procedure

1. Open transaction SE80 and open the Web Dynpro component of your
application.

2. Add IF_FPM_RESOURCE_MANAGER to Implemented Interfaces tab.

3. In the Component Controller, on the Methods tab, the ON_HIDE method is
visible.

The ON_HIDE method has an importing parameter called IV_RELEASE_COMPONENT,
which provides information to the UIBB about the FPM’s decision on the release
feasibility for the component containing this UIBB. The UIBB reacts to this
parameter only if the value is true. If the UIBB does not want itself to be released,
then it sets the exporting parameter EV_VETO_RELEASE to true (the default is false).

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 114

FPM will use the veto parameters only if the IV_RELEASE_COMPONENT is true. If the
UIBB sets the veto to true, then the component containing the UIBB is not released,
even if it is capable of being released.

The sample code below demonstrates this:

 Syntax
1. method ON_HIDE .
2. data: lv_veto type boole_d.
3. IF IV_RELEASE_COMPONENT = abap_true.
4. "do some business logic here and based on it, set the

flag
5. lv_veto = abap_true.
6. ENDIF.
7. IF lv_veto = abap_true." some bus.
8. EV_VETO_RELEASE = abap_true. "This UIBB will not be

released.
9. ENDIF.
10. endmethod.

The following table is helpful in understanding the final action taken by FPM.

IV_RELEASE_COMPONEN
T

EV_VETO_RELEAS
E FPM action

False True/False Ignore the veto value; do
not release component.

True False Release the component.

True False Do not release the
component.

Using an FPM Application Controller

Sometimes it is necessary for the application to participate in all FPM events that
happen during the entire lifetime of the application, with one arbitrary single
component instance. This might be necessary for controlling and steering the
application as a whole.

This is not possible, for example, with simple UIBBs since the methods provided by
the Web Dynpro interface IF_FPM_UI_BUILDING_BLOCK only participate in the FPM
event loop when the corresponding UIBBs are visible at the time the event loop
happens or become visible after the current event loop has finished successfully.
Furthermore the UIBBs cannot make assumptions about the sequence in which they
are called. Therefore, an application controller is provided that closes this gap and
provides the possibility to control and steer the application as a whole.

Implementing the Application Controller

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 115

The application controller is a singleton instance of a Web Dynpro component
provided by the application. In order to use a Web Dynpro component as an
application controller, complete the following steps:

1. Choose a Web Dynpro component and implement the Web Dynpro interface
IF_FPM_APP_CONTROLLER.

2. Insert the component you have chosen into the OIF or GAF component
configuration.

To do this, open the component configuration with the FPM Configuration
Editor. Choose Display and choose Global Settings. In the dialog box, enter
the component.

Regarding the behavior of instantiating the Web Dynpro components and their
participation within the FPM event loop, the Web Dynpro interfaces provided by the
FPM can be divided into two categories:

 Note

When using the interfaces IF_FPM_APP_CONTROLLER and IF_FPM_OIF_CONF_EXIT (or
IF_FPM_GAF_CONF_EXIT) together, they must be implemented by the same Web
Dynpro component. Furthermore, it is recommended to implement the Web Dynpro
interface IF_FPM_SHARED_DATA also in that Web Dynpro component (but only if this
Web Dynpro interface is needed).

IF_FPM_APP_CONTROLLER Interface

This Web Dynpro interface provides you with methods to allow the application to
participate in all FPM events that happen during the entire lifetime of the application.

Methods

This interface contains similar methods to the Web Dynpro interface
IF_FPM_UI_BUILDING_BLOCK.

The interface IF_FPM_APP_CONTROLLER has two corresponding methods with the
prefix BEFORE_ and AFTER_ for each of the IF_FPM_UI_BUILDING_BLOCK methods,
for example, BEFORE_PROCESS_EVENT and AFTER_PROCESS_EVENT.

As the names suggest, the method BEFORE_PROCESS_EVENT is called immediately
before another call to the corresponding UIBB method PROCESS_EVENT; the
AFTER_PROCESS_EVENT is called immediately after all calls to PROCESS_EVENT are
finished.

Using an Application-Specific Configuration Controller

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 116

Using an application-specific configuration controller (AppCC) allows you to do the
following:

Make global checks (checks affecting more than one UIBB)

Make global adjustments for FPM events

Read the structure of your application at runtime

Change the structure of your application dynamically

This is the place where all actions affecting more than one single UIBB can be
performed. Using an AppCC is optional; implement an AppCC only if you need one
of the features which the AppCC offers.

Implementing an AppCC Component

To provide your application with an AppCC, you implement one of the following
Web Dynpro interfaces in a Web Dynpro component:

IF_FPM_OIF_CONF_EXIT for an OIF application

IF_FPM_GAF_CONF_EXIT for a GAF application

This Web Dynpro component is either one of the components already used within
your application or is a completely new one. To declare the AppCC component to
FPM, proceed as follows:

1. Start the FPM Configuration Editor for your application component and open
the Component Configuration screen.

2. In the control region, choose Change Global Settings .

3. In the Global Settings dialog box, enter the Web Dynpro Component and the
Configuration Name.

4. Choose Save.

 Note

If your AppCC has declared a static usage to a component implementing
IF_FPM_SHARED_DATA, this shared data component is instantiated and attached
automatically by the FPM framework. This ensures that all components within your
application, which access the shared data component, will see the same instance of it.

Methods

The AppCC interface contains only one method for each floorplan application:

OVERRIDE_EVENT_OIF

OVERRIDE_EVENT_GAF

These methods pass an object of type IF_FPM_OIF (or IF_FPM_GAF), which serves as
an API for the applications. The OVERRIDE_EVENT_OIF (or OVERRIDE_EVENT_GAF)

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 117

method is called at the start of event processing on all visible UIBBs immediately
after the FLUSH method has been called.

Features

The AppCC application programming interface provides you with the following
features:

Cancelling events

With the AppCC you can peform global checks which apply to more than one
UIBB. For checking purposes, the event is stored as an attribute in the
IF_FPM_OIF (respectively IF_FPM_GAF) interface of the AppCC. You can
cancel an event out of the AppCC by calling the CANCEL_EVENT method of the
AppCC.

Selecting a variant

If there is more than one variant configured, you can select a specific variant
to be used in an event by calling SET_VARIANT method in the IF_FPM_OIF
respectively IF_FPM_GAF interface.

Adjusting events

The IF_FPM_OIF respectively the IF_FPM_GAF interface provides the
currently processed FPM event as a changeable attribute. Therefore, it is
possible to change an event by adding, removing, or changing event
parameters. You also can replace an event.

As the AppCC is called right at the beginning of the event loop, changing an
event has the same result as if changed event had been raised instead of the
original event.

Reading the configuration at runtime

The AppCC provides you with several methods which allow you to read the
configuration data at runtime. The following table gives you an overview of
all methods available for all types of floorplans.

Method Method Description

GET_CURRENT_STATE Returns the current navigation state within the
application.

GET_VARIANTS Returns a list of all available variants.

GET_UIBB_KEYS Returns a list of all UIBB assigned to a specified
main step, substep, main view or subview.

GET_UIBB_KEYS_FOR_CONF_STEP Returns a list of all UIBB assigned to a
confirmation screen.

GET_UIBB_KEYS_FOR_INIT_SCREE Returns a list of all UIBB assigned to an initial

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 118

N screen.

The following table gives you an overview of all methods available for an OIF
application.

Method Method Description

GET_MAINVIEWS Returns a list of all main views for a given variant.

GET_SUBVIEWS Returns a list of all subviews for a given main view.

The following table gives you an overview of all methods available for a GAF
application.

Method Method Description

GET_MAINSTEPS Returns a list of all main steps for a given variant.

GET_SUBSTEP_VARIANTS Returns a list of all substep variants for a given main step.

GET_SUBSTEPS Returns a list of all substeps for a given substep variant.

GET_HIDDEN_MAINSTEPS Returns a list of all hidden main steps for a given variant.

Changing the configuration at runtime

The AppCC provides you with several methods if you want to change the
configuration data at runtime. The following table gives you an overview of
all methods available for all types of floorplans.

Method Method Description

ADD_UIBB Adds dynamically another UIBB to a main view, subview, main step, or
substep.

REMOVE_UIB
B

Removes dynamically another UIBB to a main view, subview, main
step, or substep.

The following table gives you an overview of all methods available for an OIF
application.

Method Method Description

ADD_MAINVIEW Adds dynamically another main view at runtime.

REMOVE_MAINVIEW Deletes dynamically a given main view at runtime.

ADD_SUBVIEW Adds dynamically another subview at runtime.

REMOVE_SUBVIEW Deletes dynamically a given subview at runtime.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 119

RENAME_MAINVIEW Renames dynamically a given main view at runtime.

RENAME_SUBVIEW Renames dynamically a given subview at runtime.

SET_SELECTED_SUBVIE
W

Changes the target subview within a given main view.

This method must only be used in order to enforce a given
main view to switch to the provided subview instead of the
default subview.

The following table gives you an overview of all methods available for a GAF
application.

Method Method Description

RENAME_MAINSTE
P Renames dynamically a given main step at runtime.

RENAME_SUBSTEP Renames dynamically a given substep at runtime.

ENABLE_MAINSTE
P Enables or disables a given main step at runtime.

HIDE_MAINSTEP

Hides a given main step within teh roadmap.

The affected main step will not be visible as a main step in the
roadmap anymore. Nevertheless, the hidden main steps continue to
be processed in the background in order to keep the business logic
untouched.

Sharing Data between UIBBs from different Components

When the UIBBs of an application are implemented in several components, there is
often the need to share data between these components. Technically, there are several
approaches which you can take to achieve this. This is described in the following
chapters.

For this purpose, the FPM offers Shared Data components.

This is an optional FPM feature which meets most applications’ demands. However,
if needed, it can be replaced by other technical alternatives as described in “Other
Options for Sharing Data”.

Using a Shared Data Component

A shared data component is a Web Dynpro component which implements the
IF_FPM_SHARED_DATA interface. This interface contains no methods or attributes but
serves as a marker interface only. Each component (e.g. UIBB,
FPM_OIF|GAF_CONF_EXIT component) which wants to use a shared data

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 120

component needs to declare a usage to the shared data component. For this, the
technical type of the usage does not need to refer to IF_FPM_SHARED_DATA (this
would mean that it would not have accessible methods/attributes) but link to the
actual component itself. The lifecycle handling is now handled completely by the
FPM. Whenever a component is instantiated by the FPM (e.g. a UIBB which is
configured for a given screen), the FPM analyzes all usages of that component. If it
detects a usage pointing to a component which implements the IF_FPM_SHARED_DATA
interface, a singleton of this shared data component is automatically attached to the
usage.

As a result, an application must proceed as follows to share data using the shared data
interface:

Create a component which implements the IF_FPM_SHARED_DATA interface.

This component contains methods to retrieve data from the business logic and
exposes the extracted UI data via its Web Dynpro context or interface
methods.

Each component accessing this shared data defines a usage of the shared data
component. This usage is automatically instantiated by the FPM.

The consuming component can now communicate with the shared data
component via Web Dynpro context mapping, attribute access or method calls.

Other Options for sharing Data

There are other options to share data between Web Dynpro components besides the
FPM shared data concept. There are occasions when it is best not to use a Shared Data
component, as detailed below:

There is already an application-specific API available which serves as a ‘data
container’ and can be accessed by several components.

The data needs to be shared not only between Web Dynpro components but
also between other entities, such as ABAP OO classes, function groups, etc.

The amount of data to be shared is so large that putting it into a Web Dynpro
context would result in performance and memory consumption issues.

In these cases, the application can consider using techniques such as the following:

An ABAP OO class which is accessible as a singleton, so that all consumers
share the same instance.

A function group with appropriate function modules.

Embedding and FPM Application

FPM was designed for building standalone applications. However, it is possible (with
some restrictions) to embed an FPM application within another Web Dynpro
application.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 121

To do this, proceed as follows:

1. Create a usage for the component FPM_OIF_COMPONENT for OIF applications
(or FPM_GAF_COMPONENT for GAF applications) within the embedding
component.

2. Embed the FPM_WINDOW Interface View within one of the views of the
embedding component.

3. Manually create the FPM component to be used (as you must provide the
configuration key of the floorplan component). This is best done as soon as
possible.

In most cases, this is the Web Dynpro DOINIT method of the embedding
application’s component controller, as the sample code below shows:

 Syntax
1. method Web DynproDOINIT .
2. data: lo_usage type ref to if_Web Dynpro_component_usage,
3. ls_conf_key type Web Dynproy_config_key.
4. lo_usage = Web Dynpro_this->Web Dynpro_cpuse_fpm_usage().
5. if lo_usage->has_active_component() = abap_true.
6. lo_usage->delete_component().
7. endif.
8. ls_conf_key-config_id = “ID configuration of FPM

component”.
9. * recreate component using new configuration ID
10. try.
11. call method lo_usage->create_component
12. EXPORTING
13. component_name = 'FPM_OIF_COMPONENT'
14. configuration_id = ls_conf_key.
15. catch cx_Web Dynpro_runtime_api .
16. endtry.

 Note

Tthe following remarks relate to the above sample code:

The configuration you pass is the configuration key of component
FPM_OIF_COMPONENT. You cannot pass the application’s configuration key.

The code example names the usage FPM_USAGE. If you name it differently,
adjust the following line: lo_usage = Web Dynpro_this->Web
Dynpro_cpuse_fpm_usage().

The example is for an OIF application; for a GAF application, replace
FPM_OIF_COMPONENT by FPM_GAF_COMPONENT.

The delete_component() call is not necessary for simple static embedding.
However, you need it if you want to change the embedded FPM application in
the future.

(C) SAP AG Floorplan Manager ABAP - Developer’s Guide 122

Procedure

Constraints

FPM allows only one instance running at the same time within one internal
mode. Therefore, you cannot embed more than one FPM application at the
same time. It is possible to switch the embedded FPM application, replacing
one FPM application by another. You can assure this if you only use one
Usage to an FPM component within your application. This forces you to
delete the old FPM component before creating a new one.

You can not embed an FPM application within another FPM application.

You can not pass a configuration key for the IDR (header area). Therefore, the
header appears without configuration settings; these you can set
programmatically at runtime.

You can not pass application parameters for the FPM application, as the
application is now unknown to FPM.

	Copyright
	Copyright
	Copyright
	Icons in Body Text
	Typographic Conventions
	Floorplan Manager
	Floorplan Manager
	System Requirements

	Getting Started
	Getting Started
	Assumptions

	User Interface Building Blocks
	IF_FPM_UI_BUILDING_BLOCK Interface
	IF_FPM_UI_BUILDING_BLOCK Interface
	Methods

	Creating a Simple FPM Application
	Process

	Creating a Web Dynpro Component
	Procedure
	Creating the Web Dynpro Component
	Adding Views to your Web Dynpro Component

	Result

	Creating a Web Dynpro Application
	Prerequisites
	Procedure
	Result

	Using Application Parameters
	Creating an Application Configuration with the FPM Configuration Editor
	Prerequisites
	Procedure
	Configuring the Component and IDR Configurations
	Configuring the FPM_OIF_COMPONENT
	Configuring the FPM_GAF_COMPONENT
	Configuring the FPM_IDR_COMPONENT

	Result

	Testing your FPM Application
	Procedure

	Configuration Editor for Floorplan Manager
	Features
	Activities

	Form Editor for Floorplan Manager
	Features

	List Editor for Floorplan Manager
	Features

	Tabbed Component Editor for Floorplan Manager
	Features

	Design Time with the FPM Configuration Editor
	Floorplan Instances in the FPM Configuration Editor
	Floorplan Instances in the FPM Configuration Editor
	OIF Instance
	GAF Instance

	Adding and Activating Sub-Steps
	Procedure

	FPM Toolbar
	FPM Toolbar
	Differences between an OIF and a GAF Toolbar
	OIF Application
	GAF Application

	Activities
	Adding Elements to a Toolbar
	Adjusting the Toolbar Dynamically

	Toolbar Buttons
	Toolbar Buttons
	Toolbar Element Attributes
	Toolbar Button Events

	IF_FPM_CNR_GAF Interface
	IF_FPM_CNR_GAF Interface
	Accessing the API for a GAF application:
	Methods
	GAF Specific Parameters

	Example

	IF_FPM_CNR_OIF Interface
	IF_FPM_CNR_OIF Interface
	Accessing the API for an OIF application:
	Methods
	OIF Specific Parameters

	Example

	FPM Identification Region (IDR)
	FPM Identification Region (IDR)
	Adjusting the IDR Dynamically
	Adding a Link to the FPM Configuration Editor in the IDR

	IF_FPM_IDR Interface
	IF_FPM_IDR Interface
	Methods for IDR Header Area
	Methods for IDR Ticket Area
	Methods for Items Area

	Providing a Link to the FPM Configuration Editor in the IDR
	Quick Help
	Features

	Create Quick Help
	Procedure
	Create Quick Help as Direct Text
	Create Quick Help Linking to a Documentation Object

	Variants
	Variants
	Configuring Variant Selection

	Initial Screen
	Activities
	Adding an Initial Screen
	Skipping the Initial Screen

	Confirmation Screen
	Confirmation Screen
	Confirmation Screen in OIF Instances
	Confirmation Screen in GAF Instances
	Adding and Configuring the Confirmation Screen

	FPM Event Loop
	Activities
	Raising Standard Events
	Triggering the FPM Event Loop
	Triggering Application-Specific Events
	Reacting to Framework Events
	Key Web Dynpro Methods

	Different Categories of Web Dynpro Interfaces
	Generic User Interface Building Block (GUIBB)
	Feeder Classes
	Structure
	Features

	Form Component (GUIBB FORM)
	Structure
	Integration

	IF_FPM_GUIBB_FORM Interface
	IF_FPM_GUIBB_FORM Interface
	Methods

	Form Editor for Floorplan Manager
	Features

	Add Form
	Prerequisites
	Procedure
	Result

	List Component (GUIBB LIST)
	Structure
	Integration

	IF_FPM_GUIBB_LIST Interface
	IF_FPM_GUIBB_LIST Interface
	Methods

	List Editor for Floorplan Manager
	Features

	Add List
	Prerequisites
	Procedure
	Result

	Additional Information on the List Component
	Additional Information on the List Component
	Attributes
	FPM Events and the List Component

	Tabbed Component (GUIBB TABBED COMPONENT)
	Structure

	Tabbed Component Editor for Floorplan Manager
	Features

	Add Tabbed Component
	Procedure
	Result

	Changing the Tabbed Component Dynamically at Runtime
	Navigation
	Navigation
	Navigation APIs
	Suspend and Resume

	Launchpad
	Structure

	Create a Launchpad with Applications
	Procedure

	Include a Launchpad in the User Interface
	Procedure

	Working in the Navigation Customizing
	Working in the Navigation Customizing
	General Settings
	Source Parameters and Parameter Mapping
	Copying an entire Launchpad
	Copying Applications from one Launchpad to another Launchpad
	Performing Searches in Launchpads of a Client
	Re-Displaying a SAP-Delivered Launchpad
	Transporting a Launchpad

	IF_FPM_NAVIGATION API (Runtime class CL_FPM_NAVIGATION)
	IF_FPM_NAVIGATION API (Runtime class CL_FPM_NAVIGATION)
	Tables and Domains
	Methods

	Integration: Navigation in the Event Loop
	IF_FPM_NAVIGATE_TO API
	IF_FPM_NAVIGATE_TO API
	Methods

	Suspend and Resume
	Procedure
	Suspending via Static Launchpad Customizing
	Suspending via Launchpad API
	Resuming a Suspended Application

	Handling Dialog Boxes
	Triggering a Data-Loss Dialog Box in the FPM Event Loop
	Handling Application-Specific Dialog Boxes
	Procedure
	Deferring current event processing
	Registering a dialog box
	Resuming the event

	IF_FPM_WORK_PROTECTION Interface
	IF_FPM_WORK_PROTECTION Interface
	METHODS

	FPM Message Management
	Integration
	Prerequisites
	Features
	Activities
	More Information

	Using the FPM Message Manager
	Procedure
	Example

	IF_FPM_MESSAGE_MANAGER Interface
	Methods for Reporting Messages
	Methods for Reporting Messages
	Attributes
	Mandatory Parameters

	Methods for Raising Exception Messages
	Methods for Raising Exception Messages
	Attributes

	Method for Clearing Messages
	Method for Clearing Messages
	Attributes

	FPM Message Manager FAQ
	FPM Message Manager FAQ
	Can I use the Web Dynpro message manager along with the FPM message manager?
	I want to use the FPM floorplan but I do not want to use the FPM message area. Can I do this?
	Should I create a message area to use the FPM message manager?
	Can I change the position of the message area?
	I reported a message mapped to a context. I see only the text and the message is not navigable. What is happening?
	When I raise an exception, the screen dumps. When I examine the stack I see that the IF_FPM_MESSAGE_MANAGER is the point where the dump occurs. Why?

	Handling of Transactions
	Handling of Transactions
	Using the transaction interface
	FAQ

	IF_FPM_TRANSACTION Interface
	IF_FPM_TRANSACTION Interface
	Methods

	Resource Management
	Resource Management
	Releasing a Component
	Settings for Transient Behaviour

	Setting the Transient Flag
	Procedure
	Result

	Using IF_FPM_RESOURCE_MANAGER to Veto Release Decision
	Procedure

	Using an FPM Application Controller
	Using an FPM Application Controller
	Implementing the Application Controller

	IF_FPM_APP_CONTROLLER Interface
	IF_FPM_APP_CONTROLLER Interface
	Methods

	Using an Application-Specific Configuration Controller
	Using an Application-Specific Configuration Controller
	Implementing an AppCC Component
	Methods

	Features

	Sharing Data between UIBBs from different Components
	Sharing Data between UIBBs from different Components
	Using a Shared Data Component
	Other Options for sharing Data

	Embedding and FPM Application
	Procedure
	Constraints

