

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 1

How to Upload and Download Files

in a Web Dynpro for Java

Application

Applies to:

Web Dynpro for Java 7.11. For more information, visit the Web Dynpro Java homepage.

Summary

In this tutorial you learn how to download and upload files within Web Dynpro applications by utilizing the

dictionary type Resource and its related Web Dynpro APIs IWDResource and WDResourceFactory

which are available since SAP NetWeaver 04s. In contrast to the dynamic type modification of a binary
context attribute in SAP NetWeaver 04, the dictionary simple type Resource yields a fully declarative, zero
coding data transport of download and upload resources between Web Dynpro client and controller context
on server side.

Author: Web Dynpro Java Team

Company: SAP AG

Created on: 29 June 2010

https://www.sdn.sap.com/irj/sdn/nw-wdjava

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 2

Table of Contents

Prerequisites ... 3

Objectives ... 3

Some Theory .. 4

Using the Virus Scan Interface ... 4

The Tutorial Application... 5

Implementation Details .. 8

Uploading Files .. 8

Downloading Files ... 10

Extended Upload and Download features .. 12
Uploading Files in a Table.. 12

Downloading Files in a Table Using On-Demand Resources .. 15

Solution 1: Using On-Demand Streams and Calculated Context Attribute ... 16

Further Information.. 25

Legend ... 25

Text Symbols... 25

Copyright .. 26

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 3

Prerequisites

You need to install the NetWeaver Developer Studio (Version 7.11 or later) in order to compile and deploy
the tutorial application. The SAP Java AS to which this application is deployed should have the same or
newer version as the NWDS.

The tutorial application is available as a development component (DC). You need to import the software

component HM-WDUIDMKTCNT, which contains the DC tc/wd/tut/file/updwnld. The exact steps

are described in a separate document.

Objectives

By the end of this tutorial, you will be able to:

 Use the UI element FileUpload.

 Use the UI element FileDownload with different file download behaviors

 Assign the dictionary simple type Resource to context attributes so that they can store MIME files.

 Create objects of type IWDResource from an image resource deployed with the project by invoking

the WDResourceFactory API.

 Implement On-Demand Resources for Downloads.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 4

Some Theory

The Web Dynpro UI Element Library provides two special UI elements (FileDownload and FileUpload) with
which you can download files from the Web Dynpro runtime environment or upload them there. This is
performed using declarative data binding. Here, Web Dynpro runtime automatically transports different types
of MIME files between the client-side user interface or UI element and the server-side controller context.

In contrast to the semi-declarative approach in SAP NetWeaver 04, which was based on invoking the
IWDModifiableBinaryType-API in the controller code, the new dictionary simple type Resource within

SAP NetWeaver 04s yields a fully-declarative data transport of MIME resources between Web Dynpro client

and controller context on server side. The old IWDModifiableBinaryType-API should not be used

anymore since SAP NetWeaver 04s. The reasons for this are described in the chapter Implementation
Details.

In SAP NetWeaver 04s file download and upload was significantly enhanced and simplified with the following
new features:

 Dictionary Type Resource: The new Java dictionary type Resource allows to bind FileUpload and
FileDownload UI elements to context attribtues storing MIME files named resources. In SAP
NetWeaver 04 the primitive type binary must be used.

 Java Type IWDResource: The new Web Dynpro interface IWDResource is the Java type

counterpart of the dictionary type Resource. It allows to store the file content (binary resource data)

and the file metadata (MIME type, resource name) in one object. Consequently the resource
metadata (MIME type, file name) must no longer be stored in the context attribute info

(IWDAttributeInfo) using a modifiable binary type and may therefore differ among multiple

resources or node elements stored in the same context node.

 Web Dynpro Factory WDResourceFactory: Resource objects of type IWDResource can easily

be created with the new Web Dynpro factory class WDResourceFactory. This factory class

significantly simplifies the implementation of file download scenarios where statically deployed or
dynamically created resources must be stored in the context.

 Zero Coding File Upload: With the new Java dictionary type Resource it is no longer needed to
implement the type modification of a binary context attribute by invoking the

IWDModifiableBinaryType API in the controller code. Consequently file upload can be realized

in a purely declarative, zero coding approach. You just have to bind a FileUpload UI element to a
context attribute of type Resource. The Web Dynpro Runtime then automatically transports the

uploaded file to the context attribute as an object of type IWDResource.

 File Download Behaviors: The behavior of the FileDownload UI Element can now be defined with

the new Java dictionary type FileDownloadBehavior. Its enumeration specifys three different file
download behaviors: open resource in-place without opening a dialog window, save resource in local
file system (open dialog) and open resource depending on the MIME type of the downloaded file
(open dialog).

 Downloading Files in Tables On-Demand: The new on-demand streaming technique allows to
download the resource content on-demand when the user actually requests it on client side.
Especially when using the FileDownload UI element as table cell editor this new technique yields a
heavily reduced context memory consumption on server side.

Using the Virus Scan Interface

To enhance your system’s virus protection when working with files or documents processed by your Web
Dynpro applications, you can add external virus scanners to your SAP system using the Virus Scan
Interface.

To connect the FileUpload service contained in the Web Dynpro runtime environment to a virus scanner, you

need to activate the predefined virus scan profile webdynpro_FileUpload. This profile must be

activated/deactivated by the SAP J2EE Engine administrator. When delivered, profile

webdynpro_FileUpload is switched off. The Virus Scan Interface cannot be used for the Web Dynpro

FileDownload service.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 5

 Note that the example application presented in this tutorial does not use the Virus Scan
Interface. More details can be found in the SAP NetWeaver Help (see the link “Delivered Virus Scan
Profiles”) in the chapter Further Information.

The Tutorial Application

The screenshots displayed below show the views in the tutorial application.

When the application is launched, the WelcomeView appears, where you can navigate to the different
scenarios File Upload, File Download and Table.

When you press the Link “File Upload” the FileUploadView becomes visible. You can upload a file from your
computer to the server-side controller context. Once a MIME object has been uploaded, the system displays
details of the uploaded file, such as file name, file ending and file size.

In the FileDownloadView (reachable via the link “File Download”), you can download an image file, which is
deployed in the example project, from the controller context and display it on the user interface.

The file download behavior can be defined by clicking one of three radio buttons. The following screenshot

shows that the file download behavior ALLOWSAVE opens a dialog window to save the downloaded resource

on the local file system. With the behavior OPENINPLACE the resource is instantly displayed in another

browser window.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 6

Via the link “Table” you can show the TableView which shows how to use the UI elements FileDownload and
FileUpload as table cell editors. In contrast to the form-based examples in the first two screens this view
deals in addition with the following questions (Find more implantation details in the chapters below):

 How to upload image resources with different mime types (png, gif, jpg etc.) per table line?

 How to store these image resources in a multiple context node of the controller context?

 How to instantly display an uploaded image in a table cell?

 How to stream resource content (binary resource data) from server to client on-demand so that it
must not be initially streamed to the controller context before the user actually downloads it?

The initial TableView looks like follows.

By using the FileUpload UI elements and pressing the link “Upload” you can upload an image and display it
in the corresponding column “Image”.

Via the links and buttons in the columns “On-Demand Download (X)” you can download predefined images
with different mime types. Each column uses another technique for the On-Demand Resource creation.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 7

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 8

Implementation Details

Uploading Files

This section describes the implementation details of the FileUploadView.

To save a MIME file in the controller context after it has been uploaded from the user interface to the server,
you first need to define a context attribute of type com.sap.ide.webdynpro.uielementdefinitons.Resource.
The Resource type is a special dictionary simple type for MIME resources. At runtime the controller context
attribute stores the MIME resource in an object of type

com.sap.tc.webdynpro.services.sal.datatransport.api.IWDResource.

After defining the context attribute FileUpload of type Resource, you can bind a new FileUpload UI element
to it. To trigger uploading of a selected file on the user interface, a Button UI element (UploadButton) is
inserted next to it and its onAction event is bound to the UploadFile action.

Now you have to implement the Action Event Handler onActionUploadFile(). After the UploadFile action has
been triggered on the user interface, the chosen file is transported to the context attribute fileResource of
type IWDResource. All its metadata can be accessed by invoking the IWDResource-API.

 public void onActionUploadFile(IWDCustomEvent wdEvent){

 //@@begin onActionUploadFile(ServerEvent)

 IPrivateFileUploadView.IContextElement element =

 wdContext.currentContextElement();

 if (element.getFileResource() != null) {

 // if a file in the FileUpload field exists fill the context with

 // the file details, make the details visible and report

 // the success.

 IWDResource resource = element.getFileResource();

 element.setFileSize(this.getFileSize(resource));

 element.setFileExtension(

 resource.getResourceType().getFileExtension());

 element.setFileName(resource.getResourceName());

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 9

 element.setDetailsVisibility(WDVisibility.VISIBLE);

 wdComponentAPI.getMessageManager().reportSuccess(

 wdComponentAPI.getTextAccessor().getText(

 IMessageTutorial.SF_UPLOAD,

 new Object[] { resource.getResourceName()}));

 } else {

 // if no file in the FileUpload field exists hide the details and

 // report an error.

 element.setDetailsVisibility(WDVisibility.NONE);

 wdComponentAPI.getMessageManager().reportException(

 wdComponentAPI.getTextAccessor().getText(

 IMessageTutorial.NO_FILE));

 }

 // Note:

 // We clear the FileUpload context value attribute because the

 // resource is not needed afterwards anymore in this application.

 // Instead it is possible to upload another file.

 element.setFileResource(null);

 //@@end

 }

The size of the retrieved MIME resource is calculated within the private method getFileSize() which is

added to the last user coding area between the lines //@begin and //@end:

 /**

 * Read resource and calculate file size.

 * @return the file size in Bytes, KB or MB as String

 */

 private String getFileSize(IWDResource resource) {

 InputStream stream = null;

 DecimalFormat myFormatter = new DecimalFormat("###.##");

 double size = 0;

 String unit = "";

 try {

 stream = resource.read(false);

 int length = 0;

 byte[] part = new byte[10240];

 while ((length = stream.read(part)) != -1) {

 size += length;

 }

 if (size < 1024) {

 unit = " Bytes";

 } else if (size < 1048576) {

 size = size / 1024;

 unit = " KB";

 } else if (size < 1073741824) {

 size = size / 1024 / 1024;

 unit = " MB";

 }

 } catch (IOException e) {

 wdComponentAPI.getMessageManager().reportException(e);

 } finally {

 if (stream != null) {

 try {

 stream.close();

 } catch (IOException e) {

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 10

 wdComponentAPI.getMessageManager().reportException(e);

 }

 }

 }

 return myFormatter.format(size) + unit;

 }

 Note that the selected file in the FileUpload UI element (after using the Browse button) is
uploaded automatically with the next server roundtrip independently from the user action which

causes the roundtrip (e.g. pressing the right mouse button to open a context menu). The FileUpload
UI element is cleared again after the roundtrip to the server. Our recommendation is to give the user
an explicit signal that a file was uploaded successfully to avoid confusions. The tutorial application
shows for example a message when a file was selected with the Browse button but then the users
tries to open a context menu via the right mouse button:

Downloading Files

This section describes the implementation details of the FileDownloadView.

When the file is downloaded, a MIME file saved in the context is downloaded by the client. To do this, first
define a new context attribute of dictionary simple type Resource in the view context.

After defining the Resource-type context attribute fileResource, you can bind a new FileDownload UI element
to it. This UI element is displayed as a link on the user interface. When this link is selected, the MIME file
saved in the context attribute is automatically transported to the user interface. With the transfer of the
associated MIME type, the connected software on the client side can be started in order to view the MIME
file.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 11

 Web Dynpro defines _blank as the default value for the property target in the UI elements
FileDownload and LinkToURL. Although the target values _top, _parent, and _self can be used, you
are advised not to do so, as this will cause the Web Dynpro application to crash. Whereas target

value _blank always causes a new target window to open, entering a target value like "SameWindow"

causes a downloaded file to always open in the same target window (not the window of the
application) if the UI element FileDownload is clicked more than once.

 Note that no events are bound to an action when using UI element FileDownload. Nevertheless
the downloadable resource can be retrieved from the server on-demand, this means after it is
requested by the user. This on-demand streaming technique is elaborately described in the
TableView section.

In addition you can dynamically set the behavior property of the FileDownload UI element. The enumeration

type WDFileDownloadBehaviour determines how the downloaded file is represented on the client. This

property can have three different values:

 AUTO: The behaviour is predefined and depends on the mime type of the downloaded file.

 ALLOW_SAVE: An open/save dialog asks the user.

 OPEN_INPLACE: The file will be opened in place in the web page with the browser-embedded

application program.

The property behaviour of the FileDownload UI element is bound to the context attribute
fileDownloadBehaviour which has the corresponding SimpleType FileDownloadBehaviour.

The controller implementation required for the file download is in this case restricted to method
wdDoInit(), which is called when the view controller is created. Unlike file upload, no action event handling

takes place after the download process has been triggered by the user. The MIME file selected for
downloading is therefore stored in the context at the controller initialization stage.

 When using the FileDownload UI element as a table cell editor you should apply the on-demand
stream technique which is described in the TableView section. With this approach you must not
initially store all resources in the context before the user actually requests them on client side.

To allow you to download a file in the example application, the project contains the image file Sap.jpg. This

image file is stored in the project directory src → mimes → Components →
com.sap.test.tc.wd.tut.file.updwnld.wd.comp.tutorial.Tutorial and is deployed in the project archive on the
SAP J2EE Server.

In the method wdDoInit() an IWDResource is created for this file and attached to the context.

 public void wdDoInit()

 {

 //@@begin wdDoInit()

 IWDResource resource = null;

 try {

 // The image file 'Sap.jpg' is deployed with the Web Dynpro project

 // (under src/mimes/Components...). The resource path (URL) for this

 // mime objects can be accessed using the WDURLGenerator service.

 String resourcePath = WDURLGenerator.getResourcePath(

 wdComponentAPI.getDeployableObjectPart(),

 FileDownloadView.FILE_NAME);

 // retrieve resource object for given resource path and create a new

 // object of type IWDResource by invoking the WDResourceFactory API.

 resource =

 WDResourceFactory.createResource(

 new FileInputStream(new File(resourcePath)),

 FileDownloadView.FILE_NAME,

 FileDownloadView.FILE_EXT,

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 12

 true); //true: flush file input stream so that it gets closed

 //immediately

 } catch (WDAliasResolvingException e) {

 wdComponentAPI.getMessageManager().reportException(e);

 } catch (FileNotFoundException e) {

 wdComponentAPI.getMessageManager().reportException(

 wdComponentAPI.getTextAccessor().getText(

 IMessageTutorial.FNF, new Object[] {FILE_NAME}));

 }

 wdContext.currentContextElement().setFileResource(resource);

 // initialize the default file download behavior

 wdContext.currentContextElement().

 setFileDownloadBehaviour(WDFileDownloadBehaviour.AUTO);

 //@@end

 }

The name of the image file Sap.jpg and its MIME type are stored in the two controller class constants

FILE_NAME and FILE_EXT:

 // store image file name and file extension in member constants

 private static final String FILE_NAME = "Sap.jpg";

 private static final WDWebResourceType FILE_EXT =

 WDWebResourceType.JPG_IMAGE;

Extended Upload and Download features

This section describes the implementation details of the TableView. In this section we discuss an interesting
and important use case for the Web Dynpro UI elements FileDownload and FileUpload:

Uploading and downloading files in a Table UI element, or using the UI elements FileDownload and
FileUpload as table cell editors.

In contrast to the form-based examples in the first two views we now find answers on the following technical
questions:

 How to upload image resources with different mime types (png, gif, jpg etc.) per table line?

 How to store these image resources in a multiple context node of the controller context?

 How to instantly display an uploaded image in a table cell?

 How to stream resource content (binary resource data) from server to client on-demand so that it
must not be initially streamed to the controller context before the user actually downloads it?

Uploading Files in a Table

Within this section we demonstrate how to realize a simple use case of a FileUpload table cell editor:
1. The user selects an image file in the client’s file system.
2. The image resource is uploaded to the server by clicking a LinkToAction UI element in the next table

column.
3. The uploaded image is instantly displayed in another table column (Image).
4. The mime type of the uploaded images can be different in all table rows.

The context and data binding definition for our file-upload-in-table scenario is quite simple. The property
resource of the FileUpload table cell editor is bound to the context attribute tempImgResource of dictionary
type com.sap.ide.webdynpro.uielement.definitions.Resource. After uploading the image file to the server the
context attribute in the related node element stores it as an object of type Resource.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 13

To instantly display this image resource in an Image table cell editor, we bind its source property to the
calculated context attribute uploadImgURL of type String. This means we must programmatically get the
URL of the uploaded resource object which is stored in context attribute Resource. We will see later, that this

URL can easily be retrieved by invoking the IWDResource-API.

At runtime all Image UI elements in table column Image are bound to the calculated context attribute
uploadImgURL of the corresponding context node element. As the MIME type information is associated with
the resource objects on node element level but not with the context attribute information (of type

IWDAttributeInfo) on node level all uploaded images can have different MIME types.

Event Parameter Based Table Interaction

When the user clicks the LinkToAction UI element the selected image resource is uploaded to the server.
Within the related action event handler we must know the table line in which the user selected a local image
file so that we can get the required image URL.

Technically speaking we must get a reference to either the table’s lead selection or to the node element
directly. As we want to avoid an implicit lead selection change when the user selects a table line we apply
another table interaction technique: parameter mapping. With this approach a reference to the action-

triggering node element is automatically passed to the corresponding action event handler by the Web
Dynpro Java Runtime.

Within the TableView controller we define a new Action:

 Name: UploadImg

 Text: Upload. This text will be displayed in every line of table column Upload.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 14

 Parameter: resourceElement of type IPrivateTableView.IResourcesElement. This is the generated

context interface for the node element objects in the data node Resources to which the Table UI
element is bound.

The parameter mapping relation between the LinkToAction UI element event parameter nodeElement and

the action parameter resourceElement is implemented within the wdDoModifyView() hook method:

 public void wdDoModifyView(IWDView view, boolean firstTime){

 //@@begin wdDoModifyView

 if (firstTime) {

 IWDLinkToAction linkToAction =

 (IWDLinkToAction) view.getElement("UploadImgLink_Editor");

 linkToAction.mappingOfOnAction().

 addSourceMapping("nodeElement", "resourceElement");

 //...

 }

 //@@end

 }

Instead of doing the parameter mapping programmatically it is also possible to do it in a declarative way. For
this open the context menu on the LinkToAction UI element in the Outline view and select the entry
Parameter Mapping.

Within the action event handler onActionUploadImg() we copy the temporary uploaded resource

(context attribute tempImgResource) to the context attribute uploadImgResource of the same type and clear
the context attribute tempImgResource.

 public void onActionUploadImg(

 IWDCustomEvent wdEvent,

 IPrivateTableView.IResourcesElement resourceElement){

 //@@begin onActionUploadImg(ServerEvent)

 if (resourceElement.getTempImgResource() != null) {

 // If a file was uploaded, move it from the temporary context

 // attribute to the final one.

 resourceElement.setUploadImgResource(

 resourceElement.getTempImgResource());

 resourceElement.setTempImgResource(null);

 }

 //@@end

 }

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 15

This step is needed for the case when a file was uploaded within a roundtrip which is not caused by the
Upload Link (see chapter Uploading Files above). The file is uploaded and accessible via the context
attribute tempImgResource and the File Upload UI element is cleared after the roundtrip. To inform the user
that the file was uploaded but not yet processed by the application (the action event handler

onActionUploadImg() was not yet called) the tutorial application shows a trash icon in the corresponding

table row. The icon is always visible when the tempImgResource context attribute is set. By clicking on the
icon the temporary resource is cleared again.

The calculation of the URL of the uploaded image resource is done in the getter method

getResourcesUploadImgURL() of the calculated context attribute uploadImgURL.

The URL of an object of type IWDResource can easily be retrieved by invoking the interface method

IWDResource.getURL(int fileDownloadBehavior). The integer value for the parameter

fileDownloadBehavior can be calculated with the method WDFileDownloadBehavior.ordinal().

To display the uploaded image file in-place or in-table we pass the ordinal integer value for the constant
WDFileDownloadBehaviour.OPEN_INPLACE.

 public java.lang.String getResourcesUploadImgURL(

 IPrivateTableView.IResourcesElement element){

 //@@begin getResourcesUploadImgURL

 if (element.getUploadImgResource() != null) {

 // if a uploaded file exists return the URL string from IWDResource.

 // The Image gets visible on the UI based on databinding definition.

 return element.getUploadImgResource().

 getUrl(WDFileDownloadBehaviour.OPEN_INPLACE.ordinal());

 }

 return null;

 //@@end

 }

Downloading Files in a Table Using On-Demand Resources

Why using On-Demand Resources?

When using a FileDownload UI element as table cell editor in SAP NetWeaver 04 we must be aware of the

potentially high memory consumption within the controller context on server side. To understand this problem
let’s look at the following file download example.

 Please note, that the technical description of this example is based on SAP NetWeaver 04.
Afterwards we will present solutions which can only be implemented in SAP NetWeaver 04s and
later (SAP NetWeaver 7.1*) using on-demand Resource creation.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 16

A FileDownload UI element is used as cell editor inside a Table UI element in order to download a contract
PDF document for every displayed customer. We assume that every PDF document has 1MB file size and
that the table displays 100 customers.

To download one single PDF file on client side we must initially store the content of all 100 PDF files as byte
arrays within the controller context, in total 100 MB. Although Web Dynpro supports table paging on client

side (only the data of the visible rows is sent to the client) it does not support context paging on server side.
This means that a supply function initially populates the data node with all 100 node elements which can be
potentially displayed in the table. Every node element stores the byte array of 1 PDF resource in a context
attribute of type binary.

Now we assume that our customer table view is simultaneously displayed by 100 concurrent users. As every
user is running in its own Web Dynpro session the total memory consumption for all PDF files in the
controller contexts on server side sums up to 10 GB.

The high memory consumption is based on the fact, that all downloadable resources must be fully stored in
the controller context’s node elements in advance before the user actually requests or downloads them on

the client. This is based on the following circumstances:

 Data Binding: The FielDownload UI element property data must be bound to the context attribute

storing the binary data (content) of the downloadable resource. In NW 04 the Web Dynpro Runtime
stores this resource in its binary cache and sends the related download URL to the client.

 UI Element Event Model: The FielDownload UI element does not provide an action event like

onDownload which triggers a roundtrip and which could be handled in an action event handler on
server side. Consequently the application developer has no possibility to initialize a binary context
attribute lazily before the user actually downloads it and to store the corresponding byte array in it
on-demand.

Solution 1: Using On-Demand Streams and Calculated Context Attribute

Since SAP NetWeaver 04s a function is available in Web Dynpro which solves the above memory
consumption problem. But this solution has the disadvantage that a file handle is created and hold for a
longer time. For Net Weaver 7.1 and later the On-Demand Solutions 2 or 3, which are described below,

should be used.

 Context Attribute of type Resource: The FileDownload UI element must be bound to a context

attribute of type com.sap.ide.webdynpro.uielementdefinitons.Resource.

 0-Byte Resource Creation: At runtime we initially create so-called 0-byte resource objects and store

them in the controller context. A 0-byte resource is an object instance of type IWDResource

comprising resource metadata but no binary resource content (0-byte). This means we just set the
variables resourceName (file name) and resourceType (MIME type) and then store these resource

objects in the context initially. The resource content (byte arrays, java.io.InputStream or

IWDInputStream objects) is streamed to these resource objects later on-demand in case the

client requests it (on-demand streaming).

 Calculated Context Attribute and On-Demand Streaming: Instead of streaming the downloadable

binary data to the context initially it is streamed to the client on-demand. This is achieved by invoking
the getter method of an additional calculated context attribute which is referenced by the 0-byte

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 17

resource object and which returns an object of type IWDInputStream. The required server

roundtrip is automatically triggered when the user clicks the file download link in the Web Dynpro
view layout.

The process of 0-byte resource creation doesn't initially allocate memory for the file content of the resource
object but only for the file metadata. It enables the streaming of this content to be put off until it is actually
requested by the client. Instead of being streamed to the context when the table view first gets visible on the
UI, the streaming of the file content is deferred until the client actually downloads it and until the calculated
context attribute getter method is invoked in the controller on server side. Initially the client only receives the
metadata (URL, file name, MIME type) which is needed to prepare the later download of the file content (in
case it is triggered by the user).

This solution is realized for the table column “On-Demand Download (1)”.

The FileDownload UI element (DownloadImgOnDemandResource_Sol1_Editor) property resource is bound
to the context attribute dwldImgOnDemResource_Sol1 of dictionary type Resource.

Additionally a read-only calculated context attribute dwldImgOnDemStreamCalc of type IWDInputStream

must be defined. There is no data binding relation between the FileDownload UI element and this calculated
context attribute. The relation between the context attribute dwldImgOnDemResource_Sol1 of type

IWDResource to the calculated context attribute dwldImgOnDemStreamCalc of type IWDInputStream is

implemented in the controller code.

When the user triggers a file download on client side the Web Dynpro Runtime invokes the getter method of
the calculated context attribute dwldImgOnDemStreamCalc returning the file content or the binary resource
data to be streamed to the client.

Now let’s have a look at the controller code for our on-demand stream solution. To stream files from the file
or backend system on server side to the client on-demand we must instantiate empty instances of type

IWDResource when populating the context data node. A data node is a the context node to which the Table

UI element is bound.

In this sample application we just populate the data node with three node elements so that the table

comprises only three table lines (implemented in supply function supplyResources()).

Every node element stores an image resource of another MIME type to be downloaded by the client. The
creation of a 0-byte resource object is implemented by invoking a special method of the

WDResourceFactory class:

WDResourceFactory.createResource(

 IWDAttributePointer attributePointer,

 java.lang.String resourceName,

 WDWebResourceType type)

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 18

We do not pass any resource content as a byte array to the resource factory but we only pass a pointer to

the calculated context attribute instance in the same node element instead.

To avoid code redundancy we encapsulate the creation of a 0-byte resource in the private controller method
create0ByteResource().

 public void supplyResources(

 IPrivateTableView.IResourcesNode node,

 IPrivateTableView.IContextElement parentElement) {

 //@@begin supplyResources(IWDNode,IWDNodeElement)

 IPrivateTableView.IResourcesElement resourceElement;

 // ----------- 1. Resource Node Element ------------------------------

 resourceElement =

 wdContext.nodeResources().createAndAddResourcesElement();

 resourceElement.setDwldImgOnDemResourceText("SAP Logo - JPG");

 resourceElement.setDwldImgOnDemResourceName("SAPLogo.jpg");

 resourceElement.setDwldImgOnDemResourceType(

 WDWebResourceType.JPG_IMAGE);

 resourceElement.setDwldImgOnDemResource_Sol1(

 this.create0ByteResource(resourceElement));

 //...

 // ----------- 2. Resource Node Element ------------------------------

 resourceElement =

 wdContext.nodeResources().createAndAddResourcesElement();

 resourceElement.setDwldImgOnDemResourceText("SAP NetWeaver - GIF");

 resourceElement.setDwldImgOnDemResourceName("SAPNetWeaver.gif");

 resourceElement.setDwldImgOnDemResourceType(

 WDWebResourceType.GIF_IMAGE);

 resourceElement.setDwldImgOnDemResource_Sol1(

 this.create0ByteResource(resourceElement));

 //...

 // ----------- 3. Resource Node Element ------------------------------

 resourceElement =

 wdContext.nodeResources().createAndAddResourcesElement();

 resourceElement.setDwldImgOnDemResourceText("SAP TechEd - PNG");

 resourceElement.setDwldImgOnDemResourceName("SAPTechEd.png");

 resourceElement.setDwldImgOnDemResourceType(WDWebResourceType.PNG);

 resourceElement.setDwldImgOnDemResource_Sol1(

 this.create0ByteResource(resourceElement));

 //...

 //@@end

 }

 /**

 * Returns a 0-byte resource object of type IWDResource which points to a

 * calculated attribute instance.

 * The getter method of this calculated attribute is invoked by the Web

 * Dynpro Java Runtime after the user triggered the file download on

 * client side and streams the file content back to the client on-demand.

 */

 private IWDResource create0ByteResource(

 IResourcesElement resourceElement) {

 return WDResourceFactory.createResource(

 resourceElement.getAttributePointer(

 IResourcesElement.DWLD_IMG_ON_DEM_STREAM_CALC),

 resourceElement.getDwldImgOnDemResourceName(),

 resourceElement.getDwldImgOnDemResourceType());

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 19

 }

After having implemented the supply function for the table’s data node Resources and after having created

0-byte resource objects of type IWDResource, we now implement the getter method of the calculated

context attribute of type IWDInputStream. In this method we finally stream the binary content of the

requested file or resource from the server to the Web Dynpro client on-demand.

 //@@begin javadoc:getResourcesDwldImgOnDemStreamCalc

 /**

 * Declared getter method for attribute OnDemandStreamCalc of node

 * Resources. Return IWDInputStream object for given on-demand resource,

 * which is deployed in the same deployable object part (Web Dynpro

 * Component 'FileUpDownloadComp'.

 * @param element the element requested for the value

 * @return the calculated value for attribute dwldImgOnDemStreamCalc

 */

 //@@end

 public com.sap.tc.webdynpro.progmodel.api.IWDInputStream

 getResourcesDwldImgOnDemStreamCalc(

 IPrivateTableView.IResourcesElement element){

 //@@begin getResourcesDwldImgOnDemStreamCalc

 try {

 IWDResource resource =

 WDWebResource.getWebResource(

 wdComponentAPI.getDeployableObjectPart(),

 element.getDwldImgOnDemResource().getResourceType(),

 element.getDwldImgOnDemResource().getResourceName());

 InputStream inputStream = resource.read(false);

 return WDResourceFactory.createInputStream(inputStream);

 } catch (IOException e) {

 wdComponentAPI.getMessageManager().reportException(

 wdComponentAPI.getTextAccessor().getText(

 IMessageTutorial.FNF, new Object[] {

 element.getDwldImgOnDemResource().getResourceName()}));

 return null;

 }

 //@@end

 }

Within the calculated attribute getter method getResourcesDwldImgOnDemStreamCalc() we create an

object of type IWDInputStream by passing a file input stream to the WDResourceFactory service class.

In this way the 0-byte resource creation implemented in the supply function gets finally completed on-
demand by adding the missing content of the resource object which is already stored in the context attribute
DwldImgOnDemResource.

Keep in mind, that the streamed resource will not be re-calculated again after the first invocation of the

calculated context attribute getter method, in our case getResourcesDwldImgOnDemStreamCalc().

After the first invocation of the getter method, the resource is streamed to the client and keeps cached in the
Web Dynpro Binary Cache. The Web Dynpro Runtime does not re-invoke the calculated context attribute
getter method for a completely initialized, cached resource which is already streamed to the client. Only in
case the context attribute stores a 0-byte resource comprising no content the calculated context attribute
getter method gets invoked.

 In this example all image resources are deployed with the tutorial component, stored under the
folder src → mimes → Components → com.sap.test.tc.wd.tut.file.updwnld.wd.comp.tutorial.Tutorial,

so that they can be easily retrieved using the Web Dynpro services WDURLGenerator or

WDResourceFactory. In a real Web Dynpro application scenario the file content must be retrieved

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 20

by executing a corresponding model object (Adpative RFC, Adaptive Web Service) in the calculated
context attribute getter method.

Solution 2: Using the IWDResourceContentProvider API

This solution can only be used in SAP NetWeaver 7.1* or later and is realized for the table column “On-
Demand Download (2)”.

Similar to solution 1 the FileDownload UI element (DownloadImgOnDemandResource _Sol2_Editor)
property resource is bound to the context attribute dwldImgOnDemResource_ Sol2 of dictionary type
Resource.

But for this solution no calculated attribute in the context is needed. Instead the resources are created in the

context supply function supplyResources() using an instance of IWDResourceContentProvider.

To avoid code redundancy we encapsulate the creation of a resource which uses a Content Provider in the

private controller method createResourceUsingContentProvider().

 public void supplyResources(

 IPrivateTableView.IResourcesNode node,

 IPrivateTableView.IContextElement parentElement) {

 //@@begin supplyResources(IWDNode,IWDNodeElement)

 IPrivateTableView.IResourcesElement resourceElement;

 // ----------- 1. Resource Node Element ------------------------------

 //...

 resourceElement.setDwldImgOnDemResource_Sol2(

 this.createResourceUsingContentProvider(resourceElement));

 //...

 // ----------- 2. Resource Node Element ------------------------------

 //...

 resourceElement.setDwldImgOnDemResource_Sol2(

 this.createResourceUsingContentProvider(resourceElement));

 //...

 // ----------- 3. Resource Node Element ------------------------------

 //...

 resourceElement.setDwldImgOnDemResource_Sol2(

 this.createResourceUsingContentProvider(resourceElement));

 //@@end

 }

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 21

 /**

 * Returns an object of type IWDResource based on an

 * <code>IWDResourceContentProvider</code> which provides the

 * file content on-demand.

 */

 private IWDResource createResourceUsingContentProvider(

 IResourcesElement resourceElement) {

 return WDResourceFactory.createResource(

 new DemoResourceContentProvider(

 resourceElement.getDwldImgOnDemResourceName()),

 resourceElement.getDwldImgOnDemResourceName(),

 resourceElement.getDwldImgOnDemResourceType());

 }

The Web Dynpro API interface IWDResourceContentProvider must be implemented by the application

(see class DemoResourceContentProvider in the custom coding area at the end of the TableView

controller). The most interesting method of this interface is writeContent(OutputStream

outputStream) which is called when the binary data is requested for download. The test application reads

here the requested image resource which is deployed with the tutorial component and writes the read bytes
into the provided output stream.

 /**

 * <code>IWDResourceContentProvider</code> implementation which provides

 * the binary data for an <code>IWDResource</code> when needed. A

 * resource based on this interface does not copy the data to the binary

 * cache unless they are requested from the client.

 */

 private class DemoResourceContentProvider

 implements IWDResourceContentProvider{

 private String resourceName;

 private long totalLength = -1;

 public DemoResourceContentProvider(String resourceName){

 this.resourceName = resourceName;

 }

 /**

 * @see com.sap.tc.webdynpro.services.sal.datatransport.api.

 * IWDResourceContentProvider#getLength()

 */

 public long getLength() {

 return totalLength;

 }

 /**

 * @see com.sap.tc.webdynpro.services.sal.datatransport.api.

 * IWDResourceContentProvider#isAvailable()

 */

 public boolean isAvailable() {

 return true;

 }

 /**

 * @see com.sap.tc.webdynpro.services.sal.datatransport.api.

 * IWDResourceContentProvider#writeContent(java.io.OutputStream)

 */

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 22

 public void writeContent(OutputStream outputStream) throws IOException

 {

 InputStream inputStream = null;

 try {

 String resourcePath = WDURLGenerator.getResourcePath(

 wdComponentAPI.getDeployableObjectPart(), resourceName);

 inputStream = new FileInputStream(new File(resourcePath));

 totalLength = write(inputStream, outputStream);

 } catch(WDAliasResolvingException e) {

 wdComponentAPI.getMessageManager().reportException(e);

 } finally {

 if (inputStream != null) {

 try {

 inputStream.close();

 } catch (IOException e) {

 wdComponentAPI.getMessageManager().reportException(e);

 }

 }

 }

 }

 /**

 * Writes the input stream in the output stream.

 * Both streams are not closed.

 *

 * @return sum of written bytes

 */

 private long write(InputStream in, OutputStream out)

 throws IOException{

 int length = 0;

 long totalLength = 0;

 byte[] part = new byte[10240];

 while ((length = in.read(part)) != -1) {

 out.write(part, 0, length);

 totalLength += length;

 }

 return totalLength;

 }

 }

Solution 3: Using the IWDResource.download() API

This solution can only be used in SAP NetWeaver 7.1* or later and is realized for the table column “On-
Demand Download (3)”.

In contrast to the other solutions no FileDownload UI element is used here. Instead the cell editor for the
column “On-Demand Download (3)” is a Button. The onAction event of this button is bound to the Action

DownloadImg. The corresponding action event handler method is onActionDownloadImg(). All the

necessary code for the download is placed there.

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 23

For the button also the parameter mapping technique is used to automatically pass the action-triggering
node element to the action event handler. This technique is already described above in detail and can also
be done declaratively.

 public void wdDoModifyView(IWDView view, boolean firstTime){

 //@@begin wdDoModifyView

 if (firstTime) {

 //...

 IWDButton button = (IWDButton) view.getElement(

 "DownloadImgOnDemandResource_Sol3_Editor");

 button.mappingOfOnAction()

 .addSourceMapping("nodeElement", "resourceElement");

 }

 //@@end

 }

In the action event handler method onActionDownloadImg() a new resource is created for the requested

image which is deployed with the tutorial component when the resource is not yet available in the context
(when the download is triggered for the first time).

This new resource is the cached in the context (attribute dwldImgOnDemResource_Sol3) and is reused

when the download is triggered a second time. Holding the resource is also important to prevent the Java
VM Garbage Collector to destroy the resource instance after the execution of the method because then also
the computed download URL will become invalid.

Finally the method download() is called on the resource to start the download.

 public void onActionDownloadImg(IWDCustomEvent wdEvent,

 IPrivateTableView.IResourcesElement resourceElement) {

 //@@begin onActionDownloadImg(ServerEvent)

 IWDResource resource = resourceElement.getDwldImgOnDemResource_Sol3();

 if(resource == null){

 try {

 // The image file is deployed with the Web Dynpro project

 // (under src/mimes/Components...). The resource path (URL) for

 // this mime objects can be accessed using the WDURLGenerator

 // service.

 String resourcePath = WDURLGenerator.getResourcePath(

 wdComponentAPI.getDeployableObjectPart(),

 resourceElement.getDwldImgOnDemResourceName());

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 24

 // retrieve resource object for given resource path and create

 // a new object of type IWDResource by invoking the

 // WDResourceFactory API.

 resource =

 WDResourceFactory.createResource(

 new FileInputStream(new File(resourcePath)),

 resourceElement.getDwldImgOnDemResourceName(),

 resourceElement.getDwldImgOnDemResourceType(),

 true); //true: flush file input stream so that it gets closed

 // immediately

 } catch (WDAliasResolvingException e) {

 wdComponentAPI.getMessageManager().reportException(e);

 } catch (FileNotFoundException e) {

 wdComponentAPI.getMessageManager().reportException(

 wdComponentAPI.getTextAccessor().getText(

 IMessageTutorial.FNF,

 new Object[]{resourceElement.getDwldImgOnDemResourceName()}

));

 }

 // Store the resource for later reuse and to ensure

 // that it is not immediately cleaned up by the JVM Garbage

 // Collector.

 resourceElement.setDwldImgOnDemResource_Sol3(resource);

 }

 if(resource != null){

 resource.download();

 }

 }

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 25

Further Information

SAP NetWeaver CE 7.1 EHP1 Help (File Upload and File Download)
http://help.sap.com/saphelp_nwce711/helpdata/en/42/fdf9c528d45171e10000000a1553f7/frameset.htm

SAP NetWeaver CE 7.1 EHP1 Help (Delivered Virus Scan Profiles)

http://help.sap.com/saphelp_nwce711/helpdata/en/21/479a4271c80a31e10000000a1550b0/frameset.htm

This tutorial is based on the following File Upload and File Download tutorial and article which are
available in SDN:

Tutorial: http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/00062266-3aa9-2910-d485-
f1088c3a4d71

Article: http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/b0e10426-77ca-2910-7eb5-
d7d8982cb83f

Legend

Text Symbols

Symbol Usage

Note

Recommendation

Warning

 See also

http://help.sap.com/saphelp_nwce711/helpdata/en/42/fdf9c528d45171e10000000a1553f7/frameset.htm
http://help.sap.com/saphelp_nwce711/helpdata/en/21/479a4271c80a31e10000000a1550b0/frameset.htm
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/00062266-3aa9-2910-d485-f1088c3a4d71
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/00062266-3aa9-2910-d485-f1088c3a4d71
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/b0e10426-77ca-2910-7eb5-d7d8982cb83f
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/b0e10426-77ca-2910-7eb5-d7d8982cb83f
http://help.sap.com/erp2005_ehp_04/helpdata/DE/40/00be09879f114aa1ec46c2afa4445b/frameset.htm
http://help.sap.com/erp2005_ehp_04/helpdata/DE/40/00be09879f114aa1ec46c2afa4445b/frameset.htm
http://help.sap.com/erp2005_ehp_04/helpdata/DE/40/00be09879f114aa1ec46c2afa4445b/frameset.htm
http://help.sap.com/erp2005_ehp_04/helpdata/DE/40/00be09879f114aa1ec46c2afa4445b/frameset.htm

 How to Upload and Download Files in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 26

Copyright

© Copyright 2010 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9,
iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server,

PowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes,
BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX,

Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and
other Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered

trademarks of Business Objects S.A. in the United States and in other countries. Business Objects is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document
serves informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP

Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable fo r errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the

express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituti ng an
additional warranty.

