

Implementing a Course Request and
Approval Process

SAP Composite
Application
Framework

Document Version 1.00 – September 2005

© Copyright 2005 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP AG. The
information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks
of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex,
MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries,
xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity,
Tivoli, and Informix are trademarks or registered trademarks of IBM
Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open
Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame,
VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used
under license for technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and
other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their
respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are
provided by SAP AG and its affiliated companies ("SAP Group") for
informational purposes only, without representation or warranty of any
kind, and SAP Group shall not be liable for errors or omissions with
respect to the materials. The only warranties for SAP Group products
and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing
herein should be construed as constituting an additional warranty.

Disclaimer
Some components of this product are based on Java™. Any code change
in these components may cause unpredictable and severe malfunctions
and is therefore expressively prohibited, as is any decompilation of these
components.

Any Java™ Source Code delivered with this product is only to be used
by SAP’s Support Services and may not be modified or altered in any
way.

Documentation on SAP Service Marketplace
You can find this documentation at
service.sap.com/instguidesNW04

T yp o g r a p h i c C o n v e n t i o n s

Type Style Represents

Example Text Words or characters quoted from
the screen. These include field
names, screen titles,
pushbuttons labels, menu
names, menu paths, and menu
options.
Cross-references to other
documentation.

Example text Emphasized words or phrases in
body text, graphic titles, and
table titles.

EXAMPLE TEXT Technical names of system
objects. These include report
names, program names,
transaction codes, table names,
and key concepts of a
programming language when
they are surrounded by body
text, for example, SELECT and
INCLUDE.

Example text Output on the screen. This
includes file and directory names
and their paths, messages,
names of variables and
parameters, source text, and
names of installation, upgrade
and database tools.

Example text Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example text> Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

I c o n s

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Introduction September 2005
Purpose

 1

Contents
1 INTRODUCTION .. 1

1.1 Purpose ... 1
1.2 Implementation .. 1

2 SERVICE LAYER: MODELLING THE SERVICES ... 1
2.1 Create Entity Service Course .. 1

2.1.1 Create a New Project:... 1
2.1.2 Create the Entity Service .. 1
2.1.3 Create Attributes for the Entity Service .. 1
2.1.4 Create Additional Operations for the Entity Service 2
2.1.5 Additional Settings .. 3
2.1.6 Save and Test the Entity... 4

2.2 Create Application Service “CourseAppService” .. 7
2.2.1 Create the Application Service ... 8
2.2.2 Define Service Dependencies .. 8
2.2.3 Add an Operation to the Application Service.. 8
2.2.4 Implement the Operation .. 12

2.3 Result .. 14
3 COMPONENT LAYER: CREATING THE CALLABLE OBJECTS 15

3.1 Prerequisites.. 15
3.1.1 Create Endpoint Aliases ... 15
3.1.2 Create Folders for the GP Content... 15

3.2 Create Callable Objects... 16
3.2.1 Create an RFC Callable Object .. 16
3.2.2 Create a Callable Object for the Application Service 20
3.2.3 Create a Callable Object for the Data Input Form .. 22
3.2.4 Create a Callable Object for the Approval Step.. 24
3.2.5 Create a Callable Object for the Data Display Form 26

3.3 Result .. 28
4 PROCESS LAYER: MODELLING THE PROCESS.. 29

4.1 Create Actions ... 29
4.2 Create a Sequential Block... 29

4.2.1 Create a Block .. 29
4.2.2 Define the Block Flow ... 29
4.2.3 Consolidate Roles... 31
4.2.4 Consolidate Parameters ... 31
4.2.5 Activate the Block ... 34

4.3 Create the Process Template.. 34
4.3.1 Create a Process .. 34
4.3.2 Define the Process Flow... 34
4.3.3 Consolidate Roles... 34
4.3.4 Consolidate Parameters ... 35
4.3.5 Define Types of Built-In Roles .. 35
4.3.6 Activate the Process ... 35

4.3.7 Define Default Roles... 35
4.4 Test the Process.. 36

4.4.1 Start the Process .. 36
4.4.2 Execute the Process... 37

4.5 Result .. 39

Introduction September 2005
Purpose

 1

1 Introduction
1.1 Purpose
This documentation describes a process, in which you request a course, get an approval for your request, and finally
book the course and receive a confirmation. User data is retrieved from a backend system, and the information about the
booking is stored into a database.
This example demonstrates how you can integrate a heterogenous environment into a user-centric composite application
using the SAP Composite Application Framework tools. The process flow is modeled in Guided Procedures, and the
access to the backend system is implemented with services provided by CAF Core.

1.2 Implementation
The following figure shows the components that build the course booking process.

Figure 1

The individual process steps are implemented as callable objects in Guided Procedures, and are encapsulated in actions.
The actions are then integrated into a block, which defines the action execution order. Finally, the block defines the
process flow.
In the first step of the the process an employee requests a course. He or she provides a user ID, course title, data, and
price in an input form. The data is submitted to an SAP system and details about the requester are retrieved. Next, the
requestor’s manager reviews the request and either approves or rejects it. In case of rejection, the requestor receives
notification, and can modify the entries and re-request approval. In case of an approval, all data is saved in a database for
further processing and the requester receives an approval notification.
The implementation of the process involves the following steps:
...

1. Creating an entity service Course for storing the data for the approved course.
2. Creating an application service CourseAppService that uses the entity service and can be integrated into a Guided

Procedures callable object.
3. Creating the callable objects:

 A Web Dynpro input form for the course request
 An RFC callable object for access to the SAP system
 A Web Dynpro approval form
 A callable object of Composite Application Service type for persisting the course request data
 A data display form for the request confirmation

4. Encapsulating the callable objects into actions.
5. Creating a sequential block.
6. Creating the process template.

Steps 1 and 2 are implemented using the Composite Application Services (CAS) perspective in the SAP NetWeaver
Developer Studio.
Steps 3 through 6 are completed with the Guided Procedures design time. Guided Procedures is available in the
Enterprise Portal. To access its tools, you must hold the appropriate authorizations.
For more information, see the CAF documentation on the SAP help portal at http://help.sap.com/nw04s. The
documentation is available under SAP NetWeaver Library → SAP NetWeaver by Key Capability → Composite Application
Framework by Key Capability.

Service Layer: Modelling the Services September 2005
Create Entity Service Course

 1

2 Service Layer: Modelling the Services
2.1 Create Entity Service Course
2.1.1 Create a New Project:
...

1. Start the SAP NetWeaver Developer Studio.
2. To create a new project, choose New → Project….

The New Project wizard pops up. Select Development Component on the left-hand side, and Development
Component Project on the right-hand side of the window. Choose Next.

3. Expand the Local Development node and select My Components. Choose Next.
4. Enter xteched in lower-case letters for project name, and a project caption. Choose Composite Application

Services for the development component type. Choose Next.
5. To complete the procedure, choose Finish. The system notifies you whether the project creation has been

successful.

2.1.2 Create the Entity Service
...

1. Open the CAS perspective by choosing Window → Open Perspective → Composite Application Services.
2. Open the Service Explorer view.
3. Expand the xteched node and select Entity Services. Open the context menu using the secondary mouse button,

and choose New.
4. Enter Course as the entity service name and choose Finish.

In the Service Explorer view, a new node appears under Entity Services. The service editor opens and you can edit
the service configuration.

2.1.3 Create Attributes for the Entity Service
...

1. In the service editor, select the Attributes tabstrip of the Course entity.
2. In the Attributes area, open the context menu for the Course node, and choose Create Attribute.
3. In the dialog window that appears, enter name (lower case n) for the attribute’s name and Name (upper case N) for

the attribute’s description. The description will be used as a label for an input field in a UI pattern, if we create such
for the entity.

4. Choose Browse to assign a datatype to the field. In the Simple Type Selection window expand the
com.sap.caf.core node, and select the shortText datatype.
Choose OK and then Finish.

Figure 2

5. Repeat steps 2 to 4 to create the date, title, price (all of type shortText), and comment (of type
longText).

2.1.4 Create Additional Operations for the Entity Service
...
...

1. Select the Operations tabstrip and choose Add…. You can add finder methods to the entity.
2. In the dialog window that appears, enter findByTitle for Operation name.

Add the description Find courses by title.
3. Select the checkbox for the title attribute in the findBy column in the attributes list (see figure 3).
4. Choose Finish.

Figure 3

2.1.5 Additional Settings
You can also check the following entity service settings:

• The Persistency tabstrip displays the database table(s) that are to be created as a result of the modeling activities.
The Local Persistency checkbox is selected to indicate that all data will be saved and handled by CAF.
You must not change anything on this tabstrip.

• The Datasource tabstrip is important in case that you disable the Local Persistency option in the Persistency
tabstrip.
If this is the case, you can assign the entity’s lifecycle methods to external calls (for example, to a BAPI or to a Web
service).

• For example simplicity, permission checks are not covered at runtime. Therefore, go to the Permissions tabstrip
and disable the option Permission checks enabled (see figure 8).

Figure 4

• Finally, check the Implementation tabstrip.
It displays the coding generated as a result of the modeling activities. You are not allowed to change the code here.
If additional logic is required, you must implemented in an application service.

2.1.6 Save and Test the Entity
...

1. To create and save all metadata for all projects, choose (Save All Metadata).
2. Generate the Java code for the complete project.

In the Service Explorer view, open the context menu of the xteched project, and choose Generate All Project
Code (see figure 9).
The system notifies you whether the operation was successful.

Figure 5

3. To build the project for deployment, open the context menu of the xteched project and choose Development
Component Build….

Make sure that all projects are selected in the Build Development Components dialog. Choose OK.
4. To deploy the project on the Java server, open the context menu of the xteched project and choose Deploy to J2EE

engine (figure 6).

Figure 6

You might be requested to log on to the SDM server. In this case, make sure you supply the credentials of
Java server Administrator user.

5. Wait until all projects are deployed. You can check the deployment progress in the Deploy Output View (figure 7).

Figure 7

6. To test your entity service, choose Entity Services → Course, and open its context menu.
Choose Test (figure 8).

Figure 8

You might be requested to log on to the Java server. Enter the credentials of a user that holds
administration permissions.

7. The Service Browser opens in a new window (figure 9).

Figure 9

8. Under Available Services, choose sap.com xteched CourseService Course (figure 10).

Figure 10

9. To create test input data, under Data Component, choose New.
Enter some data in the first row of the table in the columns name, date, title, price, and comment – for example,
Peter Smith, 01.11.2005, CAF Basics, 1.200,- $, Need CAF know-how. Choose Save.
The entity is saved in the database by the CAF persistence layer, and automatically generates the entries for all
other table columns (figure 11).

Figure 11

10. Finally, test the search functionality in the service.
To do that, in the Available Services area of the Service Browser select the findByTitle operation under Course.
The title parameter for the findBy operation is now available in the Data Component area. Enter an asterisk (*) and
choose Execute Query. As a result, the entry created in step 9 appears in the result list.

2.2 Create Application Service “CourseAppService”
...

2.2.1 Create the Application Service
1. In the Service Explorer view of the CAS perspective in the SAP NetWeaver Developer Studio choose xteched →

Application Services. Open the context menu using the secondary mouse button, and choose New.
2. Enter CourseAppService for the application service’s name, and choose Finish.
3. In the Service Explorer view, a new node appears under Application Services. The service editor opens and you

can edit different aspects of the application service configuration, as explained in the following sections.

2.2.2 Define Service Dependencies
...

1. Open the Dependencies tabstrip.
2. You can see a list of the available services in the left-hand part of the screen under Service Catalog.

To define a dependency to the Course entity service, select it under xteched → Entity Services, and choose
(Add…).
The entity service appears under Available Services (figure 12).

Figure 12

2.2.3 Add an Operation to the Application Service
...

1. Open the Operations tabstrip and choose Add….
You can add any predefined lifecycle methods, as well as custom methods.
For this example, you need a CREATE operation that returns the key of the newly created entity.

2. In the first screen of the New Operation wizard, leave the Custom option selected as it is by default, and choose
Next.

The predefined method Create is not appropriate in this case, as it returns the entity instance itself and not
its key.

3. Enter createCourse for the operation name anddescription for the operation (figure 13).
4. Choose Finish.

Figure 13

5. Provide input parameters for the operation.
...
...

a. Select the createCourse entry in the Operations list.
Using the buttons Input, Output, Fault, and Remove, you can define parameters and exceptions for the
application service operation.

b. To add a new input parameter, select Catalog → Simple Types → com.sap.caf.core → shortText, and
choose Input.
The input parameter is added in the right-hand area with the default name arg0.

Figure 14

c. To rename the input parameter, select arg0 and open the Properties tabstrip. Overwrite the default name
value in the Value column (figure 15).

Figure 15

d. Repeat steps 2 and 3 to create the parameters date, title, price (all of type shortText), and
comment (of type longText).

2. Provide an output parameter for the operation.
...
...

The createCourse operation must return the entity instance key. In CAF the entity instance keys are string values.
To add an output string parameter, select Catalog → Simple Types → com.sap.caf.core → longText and choose
Output. A new parameter Response is added to the structure on the right-hand side (figure 16).

Figure 16

2. Add an exception for the operation.
Exception notify the service caller of application service errors. You can define different types of exceptional cases.
To add an exception, select Catalog → Faults → caf.core → ServiceException, and choose Fault. A new
exception is added in the structure on the right-hand side (figure 17).

Figure 17

3. Save the changes using (Save All Metadata).

2.2.4 Implement the Operation
...

1. Open the Implementation tabstrip of the application service editor.
The generated Java code of the application service is displayed.
In contrast to entity services, here you can modify the source code. However, it is important to know that you are
only allowed to place custom Java code in designated sections, which are marked with special Java comments.
You can write your own code between the //@@custom code start and //@@custom code end comments.
Such comments are also provided for custom import and parameter declarations.

2. Add an import statement to the code.
You can do this between the //@@custom code start – [imports] and //@@custom code end –
[imports] lines. Add the following import statement:
import com.sap.xteched.besrv.course.*;

Figure 18

3. Implement the createCourse operation.
The operation implementation is done in the CourseAppServiceBean. You can go to the relevant methor by
selecting it in the Outline view of the service (figure 19).

Figure 19

4. Insert the following code between the comments //@@custom code start – createCourse(…) and
//@@custom code end – createCourse(…):

retValue = null;
CourseServiceLocal cs = this.getCourseService();
Course course = cs.create();
course.setName(name);
course.setDate(date);
course.setTitle(title);
course.setPrice(price);
course.setComment(comment);
cs.update(course);
retValue = course.getKey();

5. Save the changes using (Save All Metadata).
6. Generate the project code, build the project, and deploy it to the Java server, as described in section Save and Test

the Entity. Make sure that all projects were deployed successfully.
7. To test your application service,

a. In the Service Explorer view, expand Application Services and select CourseAppService. Open its context
menu using the secondary mouse button, and choose Test.

b. The Service Browser opens in a new window. For testing purposes, you need to choose the relevant
operation. Under Available Services, select sap.com → xteched → CourseAppService →
createCourse_Response → createCourse.

Figure 20

c. Provide test input values – for example, Sally Summer, 01.12.2005, CAF GP, 1.399,- $, GP is
relevant for next project, and choose Execute query.
As a result, the generated entity instance key is returned.

2.3 Result
You have implemented the services required for the implementation of the Course Request and Approval process. The
next step is to integrate the service functions in Guided Procedures using callable objects.

Component Layer: Creating the Callable Objects September 2005
Prerequisites

 15

3 Component Layer: Creating the Callable Objects
3.1 Prerequisites
...

3.1.1 Create Endpoint Aliases
...

You need to create the following endpoint aliases:
• An endpoint alias for Remote Function Calls (RFC) – this requires access to an SAP system
• An endpoint alias for EJB remote call – this requires access to a Java server

To create an endpoint alias:
...

1. Launch the Guided Procedures Administration workset and choose SAP System → Configure End Points.
2. To add a new alias, choose Add.
3. Select the endpoint alias type, and enter the required parameters.
4. Test and save the alias.
5. Repeat steps 2 to 4 to add other aliases.

For more information about creating endpoint aliases, see the Guided Procedures administration documentation at
http://help.sap.com.

Figure 21

3.1.2 Create Folders for the GP Content
...

1. Launch the Guided Procedures design time.
2. In the gallery, choose Create Folder.
3. Enter a name and a description – for example, Course Request and Approval.
4. Choose Create.
5. Select the folder that you created, and choose Create Folder again.
6. Enter a name and a description – for example, Callable Objects. Choose to create the folder as a member of the

folder Course Request and Approval.
7. Repeat steps 5 and 6 to create the following folders as well:

 Actions

 Blocks
 Processes

For more information about the Guided Procedures design time, see the Guided Procedures business expert
documentation at http://help.sap.com.

3.2 Create Callable Objects
3.2.1 Create an RFC Callable Object
...

1. Launch the Guided Procedures design time.
2. Select thCe folder \Course Request and Approval\Callable Objects.
3. Choose Create Callable Object from the contextual panel (You Can menu).

A wizard guides you through the steps for creating a callable object.
4. Select External Service as the callable object type.

For name and description, enter Get User Detail RFC.

Figure 22

5. Choose Next.
Choose the endpoint alias for RFC that you have created as a prerequisite for this part of the example
implementation. To do that, use Choose.... Select the relevant alias and use Choose to confirm.
Make sure you get a confirmation for the selected endpoint as shown in figure 23.

Figure 23

6. Now you can select the relevant service.
To do that, use Choose under Service. Search for the required function by entering bapi_user* for the function
name.
Choose BAPI_USER_GET_DETAIL from the list of available functions, and choose Next.
You have selected the service.

Figure 24

7. Choose Next.
The input parameters are displayed in read-only mode.

8. Choose Next.
The input parameters are displayed in read-only mode.

9. Choose Next.
Define the error handling mode. For simplicity, error handling is not addressed in this example. Therefore, select
No Error Handling from the dropdown list.

10. To view a summary of the callable object details and to complete the procedure, choose Next and then Finish and
Open.
The callable object design time opens.

11. To test the object, choose Test Callable Object in the contextual panel.
Enter a user name as an input parameter. You must use a name that exists in the backend system – for example,
the name you use to log on to the system.
Choose Execute. If the test has been successful, choose Close.

Figure 25

12. Choose Activate Callable Object from the contextual panel, and confirm the activation. Make sure the object’s
status has changed to Active (figure 26).

Figure 26

3.2.2 Create a Callable Object for the Application Service
...

1. To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Callable Objects.
3. Choose Create Callable Object from the contextual panel.

A wizard guides you through the steps for creating a callable object.
4. Select Composite Application Service as the callable object type.

For name and description, enter Course Persistence.

Figure 27

5. Choose Next.
Choose the endpoint alias for EJB remote calls that you have created as a prerequisite for this part of the example
implementation. To do that, use Choose.... Select the relevant alias and use Choose to confirm.

6. Now you can select the relevant service.
In table All Deployed Application Services, select the xteched application. The CourseAppService application
service appears under Service Name. Select it and then select createCourse under Method Name.

Figure 28

7. Choose Next.
The input parameters are displayed in read-only mode.

8. Choose Next.
The input parameters are displayed in read-only mode.

9. To view a summary of the callable object details and to complete the procedure, choose Next and then Finish and
Open.
The callable object design time opens.

10. To test the object, choose Test Callable Object in the contextual panel.
Enter input data and choose Execute. The output is an entity instance key. To finalize the test, choose Close.

Figure 29

11. Choose Activate Callable Object from the contextual panel, and confirm the activation. Make sure the object’s
status has changed to Active.

3.2.3 Create a Callable Object for the Data Input Form
...

1. To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Callable Objects.
3. Choose Create Callable Object from the contextual panel.

A wizard guides you through the steps for creating a callable object.
4. Select Data Forms → Input as the callable object type.

For name and description, enter Course Input.

Figure 30

5. Choose Next.
The next screen displays information about the Web Dynpro component that is used for the input form.

6. Choose Next.
You must define input parameters for the data that the course requestor must enter. For that purpose, you create
the following parameters of type String:

 Name
 Title
 Price
 Date
 Comment

To define the parameters:
...

a. Choose Insert….
b. Enter a technical name. You are only allowed to use upper- and lower-case letters from the Latin alphabet,

underscore, and numbers.
c. Enter an arbitrary name. It is used for display purposes.
d. Choose the parameter type, and define this is a required parameter.
e. Choose Insert.

Figure 31

7. Choose Next.
You must define the following output parameters of type String:

 User ID
 Title
 Date
 Price
 Comment

The procedure for defining them is similar to the one used for defining input parameters.

Figure 32

8. To view a summary of the callable object details and to complete the procedure, choose Next and then Finish and
Open.
The callable object design time opens.

9. You may skip the testing step, as this is a very simple object. Choose Activate Callable Object from the contextual
panel, and confirm the activation. Make sure the object’s status has changed to Active.

3.2.4 Create a Callable Object for the Approval Step
...

1. To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Callable Objects.
3. Choose Create Callable Object from the contextual panel.

A wizard guides you through the steps for creating a callable object.
4. Select Process Control → Visual Approval as the callable object type.

For name and description, enter Course Approval.

Figure 33

5. Choose Next.
The next screen displays information about the Web Dynpro component that is used for the input form.

6. Choose Next.
The Course Approval process step must display the entries made using the data input form, also complemented by
the requestor’s name retrieved using the RFC callable object. Therefore, you must define the following input fields
of type String:

 Name
 Title
 Date

 Price
 Comment

The procedure for creating the input parameters is the same as described for the data input form.
7. Choose Next.

This callable object type already contains predefined output parameters. You do not need to define additional ones.
8. Choose Next.

In the Set Configuration screen of the wizard, you can configure the callable object to send an approval or rejection
e-mail to certain recipients. In this example, you do not need to set mail recipients.

9. Set Configuration: During this step you could add additional recipients for approval or rejection. As we don’t want to
send e-mail messages, simply click on Next.

10. To view a summary of the callable object details and to complete the procedure, choose Next and then Finish and
Open.
The callable object design time opens.

11. Choose Activate Callable Object from the contextual panel, and confirm the activation. Make sure the object’s
status has changed to Active.

3.2.5 Create a Callable Object for the Data Display Form
...

1. I To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Callable Objects.
3. Choose Create Callable Object from the contextual panel.

A wizard guides you through the steps for creating a callable object.
4. Select Data Forms → Data Display Form as the callable object type.

For name and description, enter Course Display.

Figure 34

5. Choose Next.
The next screen displays information about the Web Dynpro component that is used for the input form.

6. Choose Next.
The Course Display process step must display the data gathered in the previous steps. Therefore, you must define
the following input parameters of type String:

 Name
 Title
 Price
 Date
 Comment

The procedure for creating the input parameters is the same as described for the data input form.
7. To view a summary of the callable object details and to complete the procedure, choose Next and then Finish and

Open.
The callable object design time opens.

8. Choose Activate Callable Object from the contextual panel, and confirm the activation. Make sure the object’s
status has changed to Active.

3.3 Result
Now you have created the callable objects, and you can proceed with the process modelling phase.

Process Layer: Modelling the Process September 2005
Create Actions

 29

4 Process Layer: Modelling the Process
4.1 Create Actions
In this part of the example implementation, you need to create an action for each callable object that you defined in the
previous section. Using actions, you can integrate the callable objects into blocks and processes.
To create an action:
...

1. Open the gallery, and select folder \Course Request and Approval\Actions.
2. Choose Create Action form the contextual panel.
3. Enter a name and a description for the action.
4. Choose Save and Open.

The action’s design time opens.
5. Choose Attach Callable Objects from the contextual panel.
6. Browse to select a callable object for the Object for Execution field. Choose Save.
7. To activate the action, choose Activate Action from the contextual panel.

Use this procedure to create the following actions:

Action Name Callable Object for Execution

Get User Detail RFC Get User Detail RFC

Course Persistence Course Persistence

Course Input Course Input

Course Display Course Display

Course Approval Course Approval

4.2 Create a Sequential Block
4.2.1 Create a Block
...

1. To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Blocks.
3. Choose Create Block from the contextual panel.
4. For name and description, enter Course Approval. Make sure the selected block type is Sequential.
5. Choose Save and Open.

The block’s design time opens.

4.2.2 Define the Block Flow
...

1. Choose Edit Block Flow from the contextual panel.
2. To add the actions that you created to the block flow:

a. Choose Insert.
b. Use Select… to insert an existing action.
c. Navigate to the \Course Request and Approval\Actions and select Course Input.
d. Choose Select.
e. Repeat the above steps to add the other actions in the following order:

 Get User Detail RFC
 Course Approval
 Course Persistence
 Course Display

Figure 35

3. For action Course Approval, you also need to define a target action that is to be executed in case the request is
rejected.
To do that:

a. Extend the Course Approval node in the block flow, and select the entry Input data is rejected.
b. Choose Define Target…
c. Select Course Input, and confirm using Choose.

4. Choose Save.

Figure 36

4.2.3 Consolidate Roles
...

1. Choose Consolidate Roles from the contextual panel.
2. Decide who is the processor of each step:

 Course Input: Employee
 Get User Detail RFC: background step executed on behalf of the Employee
 Course Approval: Manager
 Course Persistence: background step executed on behalf of the Manager
 Course Display: Employee

According to the list, you must consolidate the available roles in two groups – Employee and Manager.
3. Select the following roles:

 Processor of Course Input
 Processor of Get User Detail RFC
 Processor of Course Approval

Enter Employee in the Consolidate To field, and choose Go.
4. Select the other two roles:

 Processor of Course Approval
 Processor of Course Persistence

Enter Manager in the Consolidate To field, and choose Go.
5. Choose Save.

Figure 37

4.2.4 Consolidate Parameters
...

1. Choose Consolidate Parameters from the contextual panel.
The Consolidate Parameter screen displays all input and output parameters defined for the actions in the block
flow. You must group the parameters, so that data is transferred across actions.

2. To consolidate a set of parameters, you must select them, enter a name for the group in the Consolidate To field,
and choose Go.

3. Finally, choose Save.
For this example, you must consolidate the parameters as described in the following table.

Parameter Action Consolidated
Parameter

Comment

Name Course Input

Address\Fullname Get User Detail RFC To select this
parameter, expand
the Address context
parameter and scroll
down to find the
Fullname entry.

Name Course Approval

/name Course Persistenc

Name Course Display

Name

Title Course Input

Title Course Approval

/title Course Persistence

Title Course Display

Title

Date Course Input

Date Course Approval You will find two Date
entries for the Course
Approval action.
Select the first
parameter.

/date Course Persistence

Date Course Display

Date

Price Course Input

Price Course Approval

/price Course Persistence

Price Course Display

Price

Comment Course Input

Comment Course Approval Select both entries
that you will find.

/comment Course Persistence

Comment Course Display

Comment

As a result, six parameter groups are created, as shown in figures 38 to 44.

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

4.2.5 Activate the Block
To activate the block, choose Activate Block from the contextual panel, and confirm the activation.

To activate the block, you must have activated all callable objects and actions that you used.

4.3 Create the Process Template
4.3.1 Create a Process
...

1. To return to the gallery, click on the link Gallery in the upper left corner of the screen.
2. Select the folder \Course Request and Approval\Processes.
3. Choose Create Process from the contextual panel.

For name and description, enter Course Approval.
4. Make sure that the following options are enabled:

 Multiple instances are permitted
 Process is started automatically

5. Choose Save and Open.
The process’ design time opens.

4.3.2 Define the Process Flow
...

1. Choose Edit Process Flow from the contextual panel.
2. Choose Insert.
3. Use Select… to insert an existing block.
4. Navigate to the \Course Request and Approval\Blocks and select Course Approval.
5. Choose Select.
6. Choose Save.

Figure 45

4.3.3 Consolidate Roles
Choose Consolidate Roles from the contextual panel and make sure that the roles are consolidated to the following
groups:

• Employee
• Manager

To confirm the consolidation, choose Save.
...

4.3.4 Consolidate Parameters
Choose Consolidate Parameters from the contextual panel and make sure the parameters are consolidated as described
in the section on creating a block.
To confirm the consolidation, choose Save.
...

4.3.5 Define Types of Built-In Roles
...

1. Choose Define Types of Built-In Roles from the contextual panel.
2. From the dropdown list, select Initiator for all three default process roles (Administrator, Overseer, and Owner).

At process initiation, you will not be asked to assign users to these roles. The user that initiates the process will be
automatically assigned to them.

3. Choose Save.

Figure 46

4.3.6 Activate the Process
To activate the process, choose Activate Process from the contextual panel, and confirm the activation.

To activate the process, you must have activated the block you use.

4.3.7 Define Default Roles

To complete this section, you must first create the users that you will assign to the Employee and Manager
roles.
To do that, use the User Management Console in the portal. Create the following users, for example:

• Viola Gains (user ID Gainsv)
• Randy Gordon (user ID Gordonr)

Assign the following portal role to both users:
• GP User (com.sap.caf.eu.gp.roles. user)

...

1. In the process’ design time, open the Default Roles view.
2. Select Manager in the left-hand side of the screen.

3. In the Add users area, enter an asterisk (*) to overwrite the string <search term>, and choose Go.
4. Select Gains, Viola in the result list, and choose Add (figure 47).

Figure 47

5. Repeat steps 2 to 4 to add Gordon, Randy to the Employee role.
6. Choose Done, and then Save.

4.4 Test the Process
4.4.1 Start the Process
...

1. In the process design time, open the Process Details view.
2. Open the Basic Data tabstrip, and choose Generate Instantiate URL.

An URL used for process instantiation is generated.
3. Choose Open Instantiate Application.

As a result, the process has been started (figure 48).

Figure 48

4.4.2 Execute the Process
...

1. Log on to the portal with the user ID of Randy Gordon.
2. Open the Guided Procedures runtime.

The Course Input item should appear in Randy’s work list, ready for processing. Choose the item.

Figure 49

3. The Course Input screen is displayed in a new window.
Enter the following sample data in the output parameters, as shown in figure 50:

 UserId: 1
 Title: CAF Essentials
 Date: 11.11.2005
 Price: 2.000$
 Comment: Need CAF Know-How

Figure 50

4. Choose Complete Step, and close the window.
5. Refresh Randy Gordon’s task list. The Course Input work item disappears.
6. Log off from the portal, and log on again as Viola Gains.

The work item Course Approval is ready for processing.
7. Choose the item, which opens in a new window.
8. Test the Reject option first. As a confirmation, you get a screen saying that the task has been completed. You can

close the window now.

Figure 51

9. Refresh Viola’s task list. The Course Approval work item disappears.
10. Log off from the portal, and log on as Randy.

The Course Input item is displayed again, and Randy must complete the step again entering another data – for
example:

 UserId: 1
 Title: J2EE Basics
 Date: 06.12.2005
 Price: 2.500$

 Comment: Hope this one fits
11. Log on as Viola once again, and approve the request.
12. Switch to Randy’s taks list. The Course Display item is ready for processing.
13. Choose it and review the data. Then choose OK to complete the process.
14. Check if the course request has been saved in the database.

To do that, open the CAF Service Browser using the following URL:
http://<host>:<port>/webdynpro/dispatcher/sap.com/caf~UI~servicebrowser/ServiceBrowse
r?cafsource=true

Make sure you enter the correct host and port for your Java server.
15. In the Available Services screen area, select sap.com xteched CourseService Course → findByTitle.
16. In the Data Component area, enter an asterisk (*) in the title input field and choose Execute query.

You should see the entry created during the process execution.

4.5 Result
You have successfully created and tested the Course Request and Approval process. You are now familiar with creating
composite applications using SAP CAF.

	Introduction
	Purpose
	Implementation

	Service Layer: Modelling the Services
	Create Entity Service Course
	Create a New Project:
	Create the Entity Service
	Create Attributes for the Entity Service
	Create Additional Operations for the Entity Service
	Additional Settings
	Save and Test the Entity

	Create Application Service “CourseAppService”
	Create the Application Service
	Define Service Dependencies
	Add an Operation to the Application Service
	Implement the Operation

	Result

	Component Layer: Creating the Callable Objects
	Prerequisites
	Create Endpoint Aliases
	Create Folders for the GP Content

	Create Callable Objects
	Create an RFC Callable Object
	Create a Callable Object for the Application Service
	Create a Callable Object for the Data Input Form
	Create a Callable Object for the Approval Step
	Create a Callable Object for the Data Display Form

	Result

	Process Layer: Modelling the Process
	Create Actions
	Create a Sequential Block
	Create a Block
	Define the Block Flow
	Consolidate Roles
	Consolidate Parameters
	Activate the Block

	Create the Process Template
	Create a Process
	Define the Process Flow
	Consolidate Roles
	Consolidate Parameters
	Define Types of Built-In Roles
	Activate the Process
	Define Default Roles

	Test the Process
	Start the Process
	Execute the Process

	Result

