

Getting Started with Business Object Builder
eXpert

Summary
Having to create business applications using the Business
Object Builder (BOB) tool, you will soon come across the
limitations of the tool. This tutorial introduces you into the
core principles of the eXpert tool, so that you can continue
working on your business objects using Business Object
Builder eXpert (BOBX).

Author: Thea Hillenbrand
Company: SAP AG
Created on: May 20, 2014

Level of complexity: Intermediate
Time required for completion: 45 min.

Getting Started with - (Title Via Document Properties)

 2

TABLE OF CONTENTS

BEFORE YOU START .. 3
Objectives ... 3
Prerequisites .. 3
Systems, releases, and authorizations .. 4
Knowledge ... 4

NAVIGATIGATING THE BO ... 5
Business Object Browser ... 5
Business Object Detail Browser .. 7
Result .. 9

CREATE A BO .. 9
Start the creation wizard ... 9
Propose Repository Names .. 11
Create Persistent Structure .. 12
Generate Data Dictionary Elements ... 13
Generate the business object .. 14
Test the BO ... 15
Result .. 16

CREATE QUERIES ... 16
Create SELECT_ALL Query .. 16
Create SELECT_BY_ELEMENTS Query .. 17
Generate the BO .. 18
Result .. 18

CREATE SUBNODE ... 19
Result .. 23

CREATE AN ACTION ... 23
Navigate to the implementation class ... 26
Result .. 26

UTILITIES .. 27
Propose Repository Names .. 27
Generate DDIC Objects ... 28
Constants Interface ... 28
Check .. 29
Check and Generate .. 29

SUMMARY .. 29

ANNEX .. 30

Getting Started with - (Title Via Document Properties)

 3

BEFORE YOU START

The transaction BOB is a comfortable tool for enhancing and creating Business Objects but has many
limitations. To bridge the gap to the availability of our Eclipse tool in SAP Business Suite EHP7 SP4, we offer
the transaction BOBX (Business Object Builder eXpert). This tutorial describes the basic principles of the
new tool, so that you are able to work with it. The tool, being less convenient as BOB, offers all features
needed to create complex applications. The feature set is the same that we target with our Eclipse tool – so
that you will be able to use both tools alternatingly.

Objectives

By the end of this Getting Started, you will

¶ Understand the basic principles of the tool

¶ Be able to create or modify business objects

¶ Use the functions to find model inconsistencies

The tutorial uses the same example as in the Getting Started with Business Object Framework – but focuses
on the tool specific characteristics. We recommend working through this tutorial first to get an understanding
of the BOPF entities and concepts.

Fig. 1: Structure of the business object which will be used in the tutorial

The business object we will create is a sales quote and consists of the ROOT node with minimal header
information, like QUOTE_ID, and the ITEM node with position data like PRODUCT_ID and quantity
information. On the ROOT node we will see an action to change the status of the sales quote to being
published. Creating these basic entities you will learn to work with the tool and apply the functions to create
consistent models.

Prerequisites

In order to be able to perform the Getting Started, the following prerequisites have to be fulfilled.

Getting Started with - (Title Via Document Properties)

 4

Systems, releases, and authorizations

¶ BOBX is part of the Business Suite Foundation Layer and, therefore, included in the following SAP
Business Suite releases:

- SAP Business Suite EHP6, all SP

- SAP Business Suite EHP7, all SP

¶ To implement this example, your SAP user requires the developer authorization profile (S_DEVELOP
authorization object)

Knowledge

¶ Basic knowledge in ABAP OO

¶ Experience with DDIC tools

¶ Experience with some of the BOB tutorials

Getting Started with - (Title Via Document Properties)

 5

NAVIGATIGATING THE BO

In this step you will become acquainted with the business object browser and the navigation possibilities
within a business object offered by BOBX .

Business Object Browser

Launching the transaction BOBX shows you the business object browser.

Fig. 2: Business Object Browser

It shows three main folders:

¶ Transportable Business Objects – which are assigned to a transportable and deliverable package

¶ Home Business Objects – which are transportable within a company

¶ Local Business Objects – which cannot be transported to another system

Each folder can consist of the three categories:

¶ Business Objects – which are self-contained objects

¶ Dependent Objects – which are reusable entities living only within a business object, like
/BOBF/ATTACHMENT_FOLDER

¶ Enhancement Objects – which enhance business objects created in a different layer

With this tool you can create new Business or Dependent Objects, and open any business object using the
toolbar functions.

Fig. 3: Business Object Browser ï Toolbar

You can also browse through the objects by opening the different categories in double clicking.

Getting Started with - (Title Via Document Properties)

 6

Fig. 4: Browsing the objects

Double clicking an object, opens it in the Business Object Detail Browser. In the beginning you will get the
following information message.

Fig. 5: Information message: object cannot be changed with BOBX or the Eclipse tool

This message appears when an object has been created with our internal editor. Not all attribute
combinations possible in the internal tool will be offered in BOBX or Eclipse. Some of them are not
meaningful, but the developer could have configured them. As we do not want the user to corrupt these
settings implicitly, we do not offer the change mode for these objects. Currently we are working on a check
so that BOs fitting to the restrictions of BOBX can be modified with BOBX or Eclipse.

Anyway, we continue with the selected BO /BOBF/EPM_SALES_QUOTE in the Business Object Detail
Browser. This BO is the template for the BO we will create in the next paragraph.

Getting Started with - (Title Via Document Properties)

 7

Business Object Detail Browser

Either you used the toolbar function Open or the double click in the browser to open a BO in the business
Object Detail Browser, the tool enables you to browse the entities of a BO and to edit it.

Fig. 6: Business Object Detail Browser and BO header editor

The left hand side displays the elements of the BO. The right hand side contains an editor for each element.
By double clicking you can open the editor for any element displayed in the object browser. But let’s focus on
the object browser on the left hand side first.

Fig. 7: Business Object Detail Browser - BO structure

The first folder displays the composition tree of the BO, hence the data model of the BO. The sales quote
has a ROOT node with the ITEM and RESPONSE node as composition. In the ROOT node we have a cross
BO association to the BUSINESS_PARTNER and in the ITEM node one to the PRODUCT. Nodes,
representing the node of another BO are marked by a different Icon. So you can distinguish them easily.

Note: inner BO associations beside the composition relationship are not visible in the node structure tree.

With the toggle button Display <-> Change you can switch to the edit mode. If this one is open, the right
mouse menu presents you the features available for each element like for example the creation of a
subnode.

Getting Started with - (Title Via Document Properties)

 8

Fig. 8: Toggle Display/Change mode and Features available for nodes

In the second folder Node Elements, you manage the elements describing the business logic of your object.
The structure nodes are presented in an alphabetical order and each of them contains the elements you can
create on node level.

Fig. 9: Entities describing the business logic

In this example we opened the ROOT node with a double click and the action folder to get an overview on
the assigned actions. Each entity can be opened via double click in the editor on the right hand side. Again,
the right mouse menu offers you the features available for an entity.

Last but not least you can access the Consistency Group for your business object, if your BO needs one.
The current example does not have any group assigned.

Getting Started with - (Title Via Document Properties)

 9

Note: you have to work with consistency groups if you want that a validation prevents that an inconsistent BO
instance can be saved. We do not use this feature in our example.

Result

We have now seen how to navigate a BO. In the next chapter we are going to create a business object to
demonstrate how the tool works. Whereas the navigation possibilities in BOB, BOBX and Eclipse are more
or less the same, the tool behavior is special to each tool. Nevertheless, all the tools work on the same meta
data, so that you can continue with the Eclipse tool as soon as it is available in your system.

CREATE A BO

In this chapter we will create the SALES_QUOTE business object with a root node and the two queries
supported by the framework. At the end of the chapter we will have done all manual steps necessary to get a
working business object. This is what we get after having run the BO creation wizard in the transaction BOB
or the one in the Eclipse tool.

Start the creation wizard

Fig. 10: BO Creation button in the toolbar

Press the create icon in the toolbar of the business object browser or of the business object detail browser.
In the following popup you have to enter the business object name.

Fig. 11: Enter business object name

The default object category is Business Object. But you can also define dependent objects with BOBX, which

is not possible with BOB. This is one of the additional features which you may use to structure your

application.

Getting Started with - (Title Via Document Properties)

 10

Fig. 12: It is possible to create dependent objects in this transaction

After having confirmed the popup, the business object header and the ROOT node are created.

Fig. 13: Business Object header and ROOT node

BOB users will certainly miss the name proposals, especially for the ROOT node entities but also for the

Constants Interface.

Fig. 14: ROOT node entities

Getting Started with - (Title Via Document Properties)

 11

Propose Repository Names

The naming proposal can be created with the function Propose Repository Names in the menu Extras.

Fig. 15: Propose Repository Names

On the following popup you can specify the details. You can just accept the default. It does not harm if you
marked too many check boxes, but the necessary ones are included in the selection.

Fig. 16: Details of propose repository names pop-up

Corresponding to our actual definition, it is important that the following check boxes are marked:

¶ Constants Interface Name

¶ Combined Structure Name

¶ Combined Table Type Name

¶ Data Structure Name

¶ Database Table Name.

Use the namespace or prefix feature of this function. This supports you in a consistent naming. In case of
you are using the prefix, be aware, that the data dictionary names have certain restrictions. No underscore in

Getting Started with - (Title Via Document Properties)

 12

the second position for example. A two character prefix without underscore suffices the restrictions. Our
naming proposal adds automatically an underscore after the prefix.

Confirm the popup with Enter to get the following proposals on BO header and root node level.

Fig. 17: Result for the Business Object header

Fig. 18: Result for the ROOT node

We have now created all the names for the objects we need in the BO configuration.

Create Persistent Structure

Getting Started with - (Title Via Document Properties)

 13

In the next step we are going to define the persistent structure in the data dictionary. Double click the ROOT
node to open it in the editor. Double click on the data structure name. The system guides you through a
cascade of popups – save BO, assignment to package and transport request – you know from other
development objects. Confirm them accordingly.

Finally the data dictionary tool is opened and you can define the data structure for your persistency. Please
note that in older SPs the data elements used in the example do not yet exist. Use your own ones or use the
predefined type feature to enter the types directly.

Fig. 19: Minimal persistent structure for the ROOT node

Assign an enhancement category, available in the Extras menu of the data dictionary and activate the
definition. You have to confirm again the package assignment and transportation popups. Return to the BO
editor by pressing F3.

Generate Data Dictionary Elements

Back in the BO editor we will generate the dictionary objects which are derived from the data structure
definition. You find the function Generate Dictionary Elements in the Extras menu of the BO Detail
Browser.

Fig. 20: Generate Dictionary Elements

Details can be specified on the following popup. But the defaults work in the straight forward case. So you
can just confirm them. As default the generated objects are active in the data dictionary. Thus you can start
working with them immediately. In case of generation problems (e.g. using reserved names for components
of the persistent data structure) the object is not activated. You can access the activation log in the data
dictionary to find the root cause for the activation problems.
The second default is that already generated objects are not regenerated.

Getting Started with - (Title Via Document Properties)

 14

Note: Normally you do not need to select the function ôAllow overwrite of existing dictionary objectsô. The
generated objects are using the include technology so that changes on the data structure apply automatically
to the generated objects.
Nevertheless in the beginning of a project, you may change your naming conventions and change the name
of the data structure. In this case the feature to regenerate is useful.

Fig. 21: Selection according to our current object definition

The system confirms the success or failure of the generation and activation by the following popup. So you
get feedback of what the function has generated.

Fig. 22: Generation protocol

Generate the business object

The last step before testing is the generation of the business object. But note that BOBX stores the data
always in an active version. All model changes are immediately active. The active/inactive handling as you

Getting Started with - (Title Via Document Properties)

 15

know it from workbench objects is only available in the Eclipse tool. The generation button in BOBX executes
a consistency check of the model and regenerates the Constants Interface. Up to now we didn’t work with
the Constants Interface, but if you start implementing your ABAP classes for actions for example you will
need it.

Fig. 23: Generate the Business Object

The function displays a protocol.

Fig. 24: Feedback of the generation

Test the BO

Now you can test the sales quote by pressing the test icon in the toolbar.

Fig. 25: Test the business object

The function opens the BO Test Environmentl (transaction BOBT) in a separate window. Create new
instances and save them.

Getting Started with - (Title Via Document Properties)

 16

Fig. 26: Create new instances in the test tool

But you cannot select existing instances except if you know the internal key(GUID).

Fig. 27: Only the query by key is supported

Result

With this step we have created a working BO. But to achieve the same result as the creation wizard in BOB
we have to create two queries.

CREATE QUERIES

There are two types of queries which are provided by the framework out of the box. The SELECT_ALL
query, which just selects all instances of the BO and the SELECT_BY_ELEMENTS query selecting the
instances by using all elements of a node as selection parameter. In the next two chapters we will define
them.

Create SELECT_ALL Query

Open the Node Elements Folder and the ROOT node. Select the Create Query function in the right mouse
menu, either on the ROOT entry or on the Query folder.

Getting Started with - (Title Via Document Properties)

 17

Fig. 28: Create Query

This opens the Query Editor. Enter SELECT_ALL as query name and press enter. The screen is reduced to
the relevant input fields. It is recommended to enter a description for documentation purposes.

Fig. 29: SELECT_ALL query attributes

Create SELECT_BY_ELEMENTS Query

Create a new query using the right mouse menu. On the following screen enter the query name
SELECT_BY_ELEMENTS. For this query you need to define the filter structure. To enable all node attributes
as selection parameters, use the combined data structure of the ROOT node. You do not have to provide an
implementation – the query is supported by the framework.

Getting Started with - (Title Via Document Properties)

 18

Fig. 30: SELECT_BY_ELEMENTS query attributes ï use the combined data structure of the ROOT node

Generate the BO

You can generate the BO again. The Constants Interface is updated according to the BO definition.

Fig. 31: Generation protocol

Test BO

Restart transaction BOBT to test the queries.

Fig. 32: The queries are executable in BOBT

Result

We created a BO step by step manually and achieved the same result as with the BO creation wizard in the
transaction BOB or in Eclipse. We learned how the tool works: there is no implicit generation or convenience
function. After creating an element you have to use the Propose Repository Name function to generate a
consistent naming and the Generate Dictionary Elements function to generate the derived DDIC artifacts.
The only convenience the tool offers is the Generate function, executing a consistency check and adapting
the Constants Interface to the new definition.

Getting Started with - (Title Via Document Properties)

 19

CREATE SUBNODE

In this chapter we will create the subnode ITEM to the ROOT node. You will see that the most important
utilities are again: Propose Repository Names, Generate DDIC Elements, and the Generate button.

Select the node which should be the parent of the subnode, so in this example select the ROOT node in the
Business Object Detail Browser and open the right mouse menu. The menu contains the Create Subnode
function. In the transaction BOB, you can only create Standard Nodes. BOBX offers more node types.
Beside the standard node you can embed dependent objects (Delegated Node) and create cross BO
associations (Business Object Representation Node). We are not going to describe these node types. This
will be subject of further tutorials.

So select the Standard Node function in the menu.

Fig. 33: Select the Create Standard Node function in the right mouse menu

The subnode editor opens, enter the node name ITEM.

Fig. 34: Enter the name of the Subnode

Use the Propose Repository Names in the Extras menu, to get naming proposals for all necessary
artifacts. The names for some DDIC artifacts – e.g. database tables - require that the there is no underscore
on the second or third position of the name. Thus we enter a prefix to avoid error messages. The artifacts we
need are already checked. You can just accept the defaults. The feature does not overwrite existing names.
Therefor you do not have to care for having marked too many check boxes.

The check boxes Data Structure Name (transient) and Node Class Name are not marked by default. You
only have to check them if you have to deal with transient data in the first case or in the second case if you

Getting Started with - (Title Via Document Properties)

 20

need a class to set dynamically properties, like the mandatory or read only attribute for a field. As these are
optional features, they are not marked by default.

Fig. 35: Necessary node artifacts

After having confirmed the popup, the proposed names are displayed in the node editor.

Getting Started with - (Title Via Document Properties)

 21

Fig. 36: Result of the naming proposal feature

The only artifact you have to maintain manually is the Data Structure. Select it via double click and after
some popups concerning data loss and transportation you will navigate to the DDIC where you can define
the data structure.

Fig. 37: Define the data structure of the node in the DDIC

In our example we are using quantities, so we have also to care for establishing a relationship between the
quantity and the currency field in the DDIC. This is standard DDIC behavior.

Getting Started with - (Title Via Document Properties)

 22

Fig. 38: Define the relationship between quantities and units

After having activated the DDIC definition, return to the BO tool using the F3 button. We can generate the
derived DDIC artifacts in using the function Generate Data Dictionary Elements in the Extras menu. Again
you can just accept the defaults in the following popup.

Fig. 39: Generate Data Dictionary Elements - accept the defaults

The genearation log gives you an overview of what has been done during generation. You can verify, that

the artifacts for the ROOT node have not been touched. Only those for the newly created ITEM node have

been created and successfully activated.

Getting Started with - (Title Via Document Properties)

 23

Fig. 40: Generation log for the subnode artifacts

Generate the BO with the Generate Button. You are done now creating the subnode. Press the Test button
or F8 and the test tool opens in a separate window. Create and change your items.

Result

You have created a BO with a subnode which is much more comfortable using BOB. The goal was to show
you the mechanics of the BOBX tool, so that you can use it, when you come across the limitations of BOB. In
the next chapter we will create an action, to show the relationship to the class builder.

CREATE AN ACTION

In this chapter we will create an action on the ROOT node. Again the most important utilities are: Propose
Repository Names, Generate Data Dictionary Elements, and the Generate button.

Open the Business Object Detail Browser for the Sales Quote BO. Switch to the edit mode. Elements
defining the behavior of a BO like actions, determinations and validations are displayed in the Node Element
subtree. Open this subtree. In the right mouse menu on the ROOT node you will find the function to create
actions. Select this function.

Fig. 41: Select Create Action in the right mouse menu

Getting Started with - (Title Via Document Properties)

 24

On the next screen, enter the name of the action and the cardinality. For performance reasons you should
always enable the business logic for mass data processing. Therefor select the cardinality Multiple Node
Instances.

Fig. 42: Enter the action name and the cardinality

To get a consistent naming across your application, use the function Propose Repository Names in the
Extras menu. The necessary elements for an action are already selected. Actions may have parameters in
addition to the selected node ids. As this element is optional, the check box for proposing the parameter
structure name is not selected by default. Again only names for new entities are proposed independent of
the selection on the screen. So you cannot overwrite by mistake already working element names.

Getting Started with - (Title Via Document Properties)

 25

Fig. 43: Select the check box to propose the action class name

Confirm the proposal.

Fig. 44: Naming proposal for an action

Getting Started with - (Title Via Document Properties)

 26

Generate the business object. The protocol shows that the constants interface has been regenerated.

Fig. 45: Generation Protocol

Navigate to the implementation class

The last step is to implement the action. Double click the class name and navigate to the implementation.
After some popups concerning warnings and transport attributes, enter the implementation in the class
editor.

The following code shows how you can set the quote status to published.

METHOD /bobf/if_ frw_action ~execute .

 DATA lr_root TYPE REF TO zsq_s _root . " Combined structure

 DATA lt_changed_fields TYPE /bobf/t_frw_name .

 DATA ls_key TYPE /bobf/s_frw_key .

 " Prepare update information

 CREATE DATA lr_root .

 lr_root - >quote _status = 'P' . "Published

 APPEND zif_ sq_z_ d_sales_quote_c =>sc_node_attribute - root - quote_status

 TO lt_changed_fields .

 " Do update

 LOOP AT it_key INTO ls_key .

 io_modify - >update (

 EXPORTING

 iv_node = zif_ sq_z_ d_sal es_quote_c =>sc_node - root

 iv_key = ls_key - key

 is_data = lr_root

 it_changed_fields = lt_changed_fields).

 ENDLOOP.

ENDMETHOD.

Note: ABAP 7.40 offers a more concise Syntax. You will find this example using the new syntax in the Annex.

Adapt the code to your objects (constants interface, combined structure) and activate the class. Test the action with the
BOPF test tool BOBT.

Result

We have re-implemented the scope of the Getting started with Business Object Processing Framework
tutorial. The standard practice in BOBX is:

¶ create an element via right mouse menu in the BO Detail Browser

¶ define the name of the element

¶ use the utilities in the Extras menu

Getting Started with - (Title Via Document Properties)

 27

In the following chapters we document the utilities you come across when working with BOBX.

UTILITIES

Propose Repository Names

The function Propose Repository Names in the Extras menu supports you in using a consistent naming in
your application. In smaller projects this is not so important, but in large projects it helps to keep on overview
of the artifacts. And finally the developer has less to type.

Fig. 46: Propose Repository Names

A popup shows all object types for which names are possibly necessary. The object types are grouped by
BO elements. The mandatory object types for each element are already marked. Nodes need for example
the definition of a data structure, a database table name, a structure for the runtime types (combined
structure including keys, persistent and transient structure) and the respective table type. Whereas
associations for example do not need any further attributes if they are modelled. So there is nothing marked
by default.
You can use this function at any time you create a new element in the BO. You do not have to care for the
marked check boxes as the function does not overwrite existing names. So you can focus on the attributes of
the element you just created.

In the top of the popup you can define a namespace or a prefix for the naming proposal. Take care not to
violate DDIC naming conventions if you need a name proposal for DDIC objects – avoid underscores at the
second and third position by choosing an appropriate prefix.

Getting Started with - (Title Via Document Properties)

 28

Generate DDIC Objects

The function Generate DDIC Objects in the Extras menu generates all DDIC objects you need for working
with the BO.

Fig. 47: Generate DDIC Objects

The function can be parameterized on a popup. Necessary objects are already marked by default.

It is proposed to activate the DDIC objects. Normally there is no need for reworking the generated objects.

Objects which are generated are not overwritten by default. As the generated objects are working with the
include technique, there is normally no need for regeneration. But in the beginning of modelling you may
want to change the name of the persistent structure for example. In this case you should actively trigger the
regeneration by marking the checkbox.

Last but not least you can specify the enhancement category for the DDIC objects.

Constants Interface

The constants interface contains the constants derived from the model which you need to use the BOPF
APIs. If you want to read data, you have to specify the BO-name, the node name and the association you
want to follow. It may happen that you need only selected data, so you may want to specify the elements to
be selected. For all these entities you will find constants in the interface.

The constants interface is assigned at the BO level, so you need only to know one for the complete BO. This
interface is implicitly generated at each time you activate the BO – either in Eclipse or in BOBX.

Getting Started with - (Title Via Document Properties)

 29

The regeneration of the constants interface can be triggered explicitly in the Extras menu. This function is
useful after you changed a database object; e.g. added a new field in the persistent structure. The activation
of the DDIC object does not trigger the regeneration of the constants interface.

Check

This function checks the consistency of the model. For example you will be warned if the implementation of
an action is missing, if the mandatory DDIC objects are inactive or if the trigger condition for a determination
is missing. Some of the inconsistencies lead to a dump during runtime like a missing implementation class
for an action. Some of the inconsistencies lead to a semantically incorrect behavior like validations which are
not executes when the triggers are not maintained.

Fig. 48: List of inconsistencies

The inconsistencies are displayed in the message area of the tool. Double click on a message to navigate to
the error location.

Note: Inconsistencies do not prevent the BO of being executed. During the development phase it may be
useful for example not to trigger a determination as it is not yet ready. For testing purposes you may add or
remove a trigger to compare the results. But we advise to run the Check function before releasing a BO for
productive usage.

Check and Generate

Generation in BOBX executes the consistency check and generates the constants interface.

Note: In the ABAP workbench you are used to the functions activate and generate. Our backend tools (BOB
and BOBX) do not support inactive versions. The Eclipse tool supports this ABAP Workbench feature. If your
team is working with the Eclipse tool and BOBX in parallel, BOBX displays inactive objects. But you cannot
switch to the edit mode. You have to activate the BO in Eclipse before continuing with BOBX.

SUMMARY

We have seen how to proceed with BOBX to create and modify business objects. BOBX is less convenient
as BOB as the steps have to be executed explicitly. On the other hand you can use the complete feature set
of BOPF to define your BO.

The most important functions are: Propose Repository Names, Generate Data Dictionary Elements, Check
and Check and Generate. This applies for all elements in the BOPF model. Now discover new features not
offered by BOB like the definition of alternative keys, the embedding of dependent objects or modelled
associations. The features will be described in further tutorials using the Eclipse tool. Only if BOBX differs too
much, these features will also be described in dedicated BOBX tutorials.

Getting Started with - (Title Via Document Properties)

 30

ANNEX

Find here the implementation of the action to set the status of the sales quote to the status ‘published’ in the
new concise ABAP syntax. This syntax can be used with ABAP 7.40.

 METHOD /bobf/if_frw_actio n~execute.

 " Prepare update information

 DATA(lr_root) = NEW zsq_s_root().

 lr_root - >quote_status = 'P'. "Published

 " Do update

 LOOP AT it_key INTO DATA(ls_key).

 io_modify - >update(

 EXPORTING

 iv_node = zi f_sq_z_sales_quote_c=>sc_node - root

 iv_key = ls_key - key

 is_data = lr_root

 it_changed_fields = VALUE #((

 zif_sq_z_sales_quote_c=>sc_node_attribute - root - quote_status))).

 ENDLOOP.

ENDMETHOD.

	Before you start
	Objectives
	Prerequisites
	Systems, releases, and authorizations
	Knowledge

	Navigatigating the BO
	Business Object Browser
	Business Object Detail Browser
	Result

	Create a BO
	Start the creation wizard
	Propose Repository Names
	Create Persistent Structure
	Generate Data Dictionary Elements
	Generate the business object
	Test the BO
	Result

	Create Queries
	Create SELECT_ALL Query
	Create SELECT_BY_ELEMENTS Query
	Generate the BO
	Result

	Create Subnode
	Result

	Create an Action
	Navigate to the implementation class
	Result

	Utilities
	Propose Repository Names
	Generate DDIC Objects
	Constants Interface
	Check
	Check and Generate

	Summary
	Annex

