Getting tBuSiedesvs’st@bj ect
eXpert

Summary

Having to create business applications using the Business
Object Builder (BOB) tool, you will soon come across the
limitations of the tool. This tutorial introduces you into the
core principles of the eXpert tool, so that you can continue
working on your business objects using Business Object
Builder eXpert (BOBX).

Level of complexity: Intermediate
Time required for completion: 45 min.

Author: Thea Hillenbrand
Company: SAP AG
Created on: May 20, 2014

SAPd

B

Getting Started with - (Title Via Document Properties)

TABLE OF CONTENTS

BEFORE YOU ST ART .. ceeitiiiiiie ittt ettt e e e e e sttt et e e e e e s e s te b e e eaeae s e s s nbateeeeaeesa e snbaeeeeeaeesaanssbaneeaaeeeaaannnes 3
(O] o J1=To 1YL= ST O PP PP PP PTPPPP 3
L (= =T [T (O SEERS 3
Systems, releases, and AUINOMZATIONSuuiii ittt e e b e e e b e e e aanns 4
([0 (=T o [T IO O PP P TP PP PTPPP P 4
NAVIGATIGATING THE BO ...ttt ettt ettt e e o4 s sttt et e e e s e s ae b e e et e aeeesaanbbbnneeeaeeeaannnnes 5
BUSINESS ODJECT BIOWSEN ..ciiiiiiiiittiett e e e ettt e e ettt et e e e e e s bbb ettt e e e s e s s et e e et e eee e s e s nnbbeeeeeeeesaanssbnneaeaeeeaaannne 5
BUSINESS ODJECT DELAIl BIOWSEoeeiiiiieiiieieiiieieeeeee ettt ettt et e e e et e teeeeesesaaseesasasesssasssesssssnssnssssenennnnsnsnnnnns 7
ST U | TSP TPPPPPPPPTPTTOE 9
L0] I N = PRSPPI 9
Start the Cre@tioN WIZAIMuuiiiiiiiiiiiii s a e e aaaaaaaaasaaannannnnnanannnannnnsnnnnnnnnnnnnnnnnnnnnns 9
PropOSE REPOSITONY NABMESttt e e s bt e e e s bt e e e aa b et e e e anbe e e e e anbe e e e e anbeeeeenrnas 11
Create PerSiSTENT SIIUCTUIE ..oiiii it e e e e e e e e et e et e e e s s s aa b e eeaeeeessasenbeeeeeaeeesannsnteeeaeaennan 12
Generate Data DICtioNary EIEMENTScoi ittt e et e e et e e et e e e e abaeeeeaaes 13
Generate the DUSINESS ODJECTiiiii et e et e e aaes 14
L] R =T =T O T PP TSP PP PPPP R TPPPP 15
YIS TU | PO PP O O PP PUPPPPPPPTTRTN 16
CREATE QUERIES.ttt e e oo et ettt e e o4 e e bbbt e et e e e e e s e nbb b b e e e e e e e e eanbnbneneeaeeean 16
Create SELECT _ALL QUEIY ..ttt s 16
Create SELECT_BY_ELEMENTS QUETY ..ottt ettt ettt e e e e e e sttt e e e e e e e s enbnbneeaaaee s 17
LT oL = L =N =1 18
LR LE1] U1 PP PPPPPPRPPPPPPPPPPPRt 18
CREATE SUBNODE ... ieiiiiieee ettt e e e e e et e et e e e s e s st eeeeaeeeseasssteeeeeaeeesaansnteneeaaeeeannsnsennneaenenn 19
LR L1 U1 PP PPPPPPRPPPPPPPPRPPRt 23
CREATE AN ACTION L.ttt ettt e e sttt e e e e e st e et e e e e s s st eeeeaeeesaassteeeeeaeeesaansnteneeaaeeeaannsnsennneeeennn 23
Navigate to the Implementation CIASSccuiiiiiie e e e s e e e e e e e s e annbeeeeeaeeeeeannes 26
ST U | | PSP OUPPPPPPPPTN 26
LU I I 1 PSP OUPPPPPPPPTN 27
Prop0Se REPOSITONY NAMESoiiiiiiiiiiiiiiieiiei ettt ettt ittt ee ittt et eeeeeeaeeeeeeeeeasaessesesssssasssssssasssssssssssssssssssssssnnnnnnnnnnes 27
LT aT=T = L= DT T @ @ o =T o} = 28
CONSTANTS INEEITACE ..uuiuiiiiiiiiiiiiii e aaas s nan 28
L 0 =T o] 29
(01 1ot L= T g Yo I CT=T g T=T = L= 29
Y 1YY SO EER 29
N N LN PR 30

Getting Started with - (Title Via Document Properties)

BEFORE YOU START

The transaction BOB is a comfortable tool for enhancing and creating Business Objects but has many
limitations. To bridge the gap to the availability of our Eclipse tool in SAP Business Suite EHP7 SP4, we offer
the transaction BOBX (Business Object Builder eXpert). This tutorial describes the basic principles of the
new tool, so that you are able to work with it. The tool, being less convenient as BOB, offers all features
needed to create complex applications. The feature set is the same that we target with our Eclipse tool — so
that you will be able to use both tools alternatingly.

Objectives

By the end of this Getting Started, you will

1 Understand the basic principles of the tool

1 Be able to create or modify business objects

1 Use the functions to find model inconsistencies

The tutorial uses the same example as in the Getting Started with Business Object Framework — but focuses
on the tool specific characteristics. We recommend working through this tutorial first to get an understanding
of the BOPF entities and concepts.

Z SALES_QUOTE

<<Node>> <<Action>>

ROOT PUBLISH

<<Node>>

ITEM

Fig. 1: Structure of the business object which will be used in the tutorial

The business object we will create is a sales quote and consists of the ROOT node with minimal header
information, like QUOTE_ID, and the ITEM node with position data like PRODUCT_ID and quantity
information. On the ROOT node we will see an action to change the status of the sales quote to being
published. Creating these basic entities you will learn to work with the tool and apply the functions to create
consistent models.

Prerequisites

In order to be able to perform the Getting Started, the following prerequisites have to be fulfilled.

Getting Started with - (Title Via Document Properties)

Systems, releases, and authorizations

1 BOBX is part of the Business Suite Foundation Layer and, therefore, included in the following SAP
Business Suite releases:
- SAP Business Suite EHP6, all SP
- SAP Business Suite EHP7, all SP

1 To implement this example, your SAP user requires the developer authorization profile (S_DEVELOP
authorization object)

Knowledge
1 Basic knowledge in ABAP OO

1 Experience with DDIC tools
1 Experience with some of the BOB tutorials

Getting Started with - (Title Via Document Properties)

NAVIGATIGATING THE BO

In this step you will become acquainted with the business object browser and the navigation possibilities
within a business object offered by BOBX .

Business Object Browser

Launching the transaction BOBX shows you the business object browser.

Business Object Processing Framework
O &

Business Object Browser Description
= < Transportable Business Objects

+ (3 Business Objects (37)

v (1 Dependent Objects (5)
~ = HOME Business Objects

» [Business Objects (110)

v (1 Dependent Ohjects (6)

¥ [J Enhancement Objects (4)
= 3 Local Business Objects

» [Business Objects (1612)

v [Dependent Objects (13)

* [J Enhancement Objects (40)

Fig. 2: Business Object Browser

It shows three main folders:

1 Transportable Business Objects — which are assigned to a transportable and deliverable package
1 Home Business Objects — which are transportable within a company

9 Local Business Objects — which cannot be transported to another system

Each folder can consist of the three categories:

1 Business Objects — which are self-contained objects

1 Dependent Objects — which are reusable entities living only within a business object, like
/BOBF/ATTACHMENT_FOLDER

1 Enhancement Objects — which enhance business objects created in a different layer

With this tool you can create new Business or Dependent Objects, and open any business object using the
toolbar functions.

Business Object Processing Framework
O &

Fig. 3: Business Object Browser i Toolbar

You can also browse through the objects by opening the different categories in double clicking.

Getting Started with - (Title Via Document Properties)

Business Object Processing Framework

O &

Business Object Browser Description

= i Transportable Business Objects -

* 121 Business Ohjects (37) i

+ @ /BOBF/CONF_INVALIDATE_ALL
+ @3 /BOBF/CONF_LIBRARY BOPF Library
- @ JBOBF/COMF_MODEL BOPF Configuration
- B JBOBF/DEMO_ATTACHMENT_FOLDER Attachment Folder:
+ &3 /BOBF/DEMO_CUSTOMER Customer (Dermo)
- @ /BOBF/DEMO_PRODUCT Product (Demo)
- @ /BOBF/DEMO_SALES_ORDER Sales Order (Demo)
- @ J/BOBF/EPM_BUSIMESS_PARTHER Business Partner (Bt
+ @ /BOBF/EPM_PRODUCT BOPF EPM Product
- &3 /BOBF/EPM_SALES_INVOICE EPM: Sales Invoice ¢
- @ /BOBF/EPM_SALES_ORDER Sales Order (BOPF ¢
- @ /BOBF/EPM_SALES_QUOTE EPM: Sales Quote B
+ @ /BOBF/NON_HOME_TEST_OBIECT BO for testing with
+ @ /BOBF/TOOL_COMTRACT_CHECK BOPF Contract Com
- @ JBOFU/ADMIN_DATA_ CHECK Admin Data Check
+ & /BOFU/ALERT Alert (Metweaver A
+ @ /BOFU/BASIS_APPLICATION_LOG Application Log(BAL
- @3 /BOFU/BO_FOR_TESTING_BFI BO_FOR_TESTING !
» @3 /BOFU/BUSINESSPARTNER BusinessPartner (BU
- @B dnmarie A ReE T BoE TRAER T Fhoe s P ot

Fig. 4: Browsing the objects

Double clicking an object, opens it in the Business Object Detail Browser. In the beginning you will get the
following information message.

(= Inforrmation x

o Display mode onby

Vi@

Fig. 5: Information message: object cannot be changed with BOBX or the Eclipse tool

This message appears when an object has been created with our internal editor. Not all attribute
combinations possible in the internal tool will be offered in BOBX or Eclipse. Some of them are not
meaningful, but the developer could have configured them. As we do not want the user to corrupt these
settings implicitly, we do not offer the change mode for these objects. Currently we are working on a check
so that BOs fitting to the restrictions of BOBX can be modified with BOBX or Eclipse.

Anyway, we continue with the selected BO /BOBF/EPM_SALES_QUOTE in the Business Object Detail
Browser. This BO is the template for the BO we will create in the next paragraph.

Getting Started with - (Title Via Document Properties)

Business Object Detail Browser

Either you used the toolbar function Open or the double click in the browser to open a BO in the business
Object Detail Browser, the tool enables you to browse the entities of a BO and to edit it.

Display Business Object /BOBF/EPM_SALES QUOTE, Active Version
ODE? @b @

Busiess Object Detail Browser | Descrption _ Business Object |
T (€D [BOBF/EPM_SALES QUOTE EPM: Sales Quote BO { [~
~ {1 Node Structure
~ @ ROOT Sales Quote Root (Hea Business Object /BOBF/EPM SRLES QUOTE Active Version
-~ @ ITEM EPM: Sales Quote Iterr | Description EPM: Sales Quote BO (BOPF)
- @ PRODUCT Object Category not chassified v
+ (& RESPONSE EPM: Sales Quote Resp

o @? BUSINESS_PARTNER
* [(Qnode Elements

+ [Consistency Group Business Object Settings

Constants Interface /BOBE/IF EFM SALES QUOTE C

Administrative Data
Creation SRINTVASANVE [10.06.2013 14:21:08
Last Changed SCHMINEEC 02.04.2014 17:03:01

Administrative Data (Overall Model)
Last Changed SCHMINEEC 02.04.2014 17:03:01

Fig. 6: Business Object Detail Browser and BO header editor

The left hand side displays the elements of the BO. The right hand side contains an editor for each element.
By double clicking you can open the editor for any element displayed in the object browser. But let’s focus on
the object browser on the left hand side first.

Business Object Detail Browser Description
v @ /BOBF/EPM_SALES QUOTE | EPM: Sales Quote BO (BOPF)
* &3 Node Structure
v () ROOT Sales Quote Root (Header) Mode
v @ ITEM EPM: Sales Quote Item Mode
- @7 PRODUCT
+) RESPONSE EPM: Sales Quote Responses Mode

- @? BUSIMESS_PARTMER
* [Node Elements
* [Consistency Group

Fig. 7: Business Object Detail Browser - BO structure

The first folder displays the composition tree of the BO, hence the data model of the BO. The sales quote
has a ROOT node with the ITEM and RESPONSE node as composition. In the ROOT node we have a cross
BO association to the BUSINESS PARTNER and in the ITEM node one to the PRODUCT. Nodes,
representing the node of another BO are marked by a different Icon. So you can distinguish them easily.

Note: inner BO associations beside the composition relationship are not visible in the node structure tree.
With the toggle button Display <-> Change you can switch to the edit mode. If this one is open, the right

mouse menu presents you the features available for each element like for example the creation of a
subnode.

Getting Started with - (Title Via Document Properties)

Maintain Business Object /BOBF/EPM_SALES QUOTE, Active Version

ndv|ess

Business Object Detail Browser Description
~ & /BOBF/EPM_SALES QUOTE EPM: Sales Quote BO {BOFF)
~ 24 Node Structure
- EOF{GGT """"""""""""""""""""""""""""""""""""" Calne Muntn Dot flnadae) boda]
- (3 ITEM Create Subnode » Standard Mode
* @& PROLC Delete Node Delegated Mode
: é; :Ei?ﬁg Expand Subtree Business Object Representation Node

¥ (1 Node Elements Details
¥ [Consistency Gro Help

Fig. 8: Toggle Display/Change mode and Features available for nodes

In the second folder Node Elements, you manage the elements describing the business logic of your object.
The structure nodes are presented in an alphabetical order and each of them contains the elements you can
create on node level.

Business Object Detail Browser Description
v @ /BOBF/EPM_SALES _QUOTE EPM: Sales Quote BO (BOPF)
» ClNodeStucture
~[SiNodeElements j
¥ @"’ BUSIMESS _PARTMER
v) ITEM EPM: Sales Quote Itermn Mode
¥ @ PRODUCT
v () RESPONSE EPM: Sales Quote Responses Node
v @ ROOT Sales Quote Root (Header) Mode

* [static Properties
v [Associations

* [Determinations
v

(7 validations
- &3 Actions
b @ ACCEPT EPM: Action to Accept a Sales Quote
v (% CANCEL EPM: Action to Cancel a Sales Quote
¥ @ CREATE_SALES_QORDER EPM: Action to Create EPM Sales Order
b @ PUBLISH EPM: Action to Publish a Sales Quote
b @ REIECT EPM: Action to Reject a Sales Quote
(J Queries

(7 Alternative Keys

(7 Authorization Objects

(3 Authorization Field Mapping
* [Consistency Group

Fig. 9: Entities describing the business logic

In this example we opened the ROOT node with a double click and the action folder to get an overview on
the assigned actions. Each entity can be opened via double click in the editor on the right hand side. Again,
the right mouse menu offers you the features available for an entity.

Last but not least you can access the Consistency Group for your business object, if your BO needs one.
The current example does not have any group assigned.

Getting Started with - (Title Via Document Properties)

Note: you have to work with consistency groups if you want that a validation prevents that an inconsistent BO
instance can be saved. We do not use this feature in our example.

Result

We have now seen how to navigate a BO. In the next chapter we are going to create a business object to
demonstrate how the tool works. Whereas the navigation possibilities in BOB, BOBX and Eclipse are more
or less the same, the tool behavior is special to each tool. Nevertheless, all the tools work on the same meta
data, so that you can continue with the Eclipse tool as soon as it is available in your system.

CREATE ABO

In this chapter we will create the SALES_QUOTE business object with a root node and the two queries
supported by the framework. At the end of the chapter we will have done all manual steps necessary to get a
working business object. This is what we get after having run the BO creation wizard in the transaction BOB
or the one in the Eclipse tool.

Start the creation wizard

Display Business Object /BOBF/EPM_SALES QUOTE, Active Version

w Y

Business Object Detail Browser Description

~ [@ /BOBF/EPM_SALES_QUOTE EPM: Sales Quote BO (BOPF)
* [Node Structure
* [(JNode Elements
+ [Consistency Group

Fig. 10: BO Creation button in the toolbar

Press the create icon in the toolbar of the business object browser or of the business object detail browser.
In the following popup you have to enter the business object name.

[T Create Business Object

Business Object Z_sales_guote
I~
Description I_EGEX Test to create a3 sales quote BGI
Froperties
Bus. Object Category Business Object -

V%]

Fig. 11: Enter business object name

The default object category is Business Object. But you can also define dependent objects with BOBX, which
is not possible with BOB. This is one of the additional features which you may use to structure your
application.

Getting Started with - (Title Via Document Properties)

[= Create Business Object

Business Object Z_sales_guote
I
Description BOBX Test to create a sales quote BO
|
Properties L
I - . =1
Bus. Object Category | Business Object t.
Business Object 1
Dependent Object

Fig. 12: It is possible to create dependent objects in this transaction
After having confirmed the popup, the business object header and the ROOT node are created.

Maintain Business Object Z_SALES_ QUOTE, Active Version
O aE

Business Object Detail Browser Des... Business Object |
~ @& Z_sALES_QUOTE BOBX T, ™
' Node STructure) . ; i
- @ ROOT Business Object Z_SALES QUOTE Active Version
il - Description BOBX Test to create 3 sales quote BO
» [J consistency Group Object Category Business Process Object -

["|Business Object has Authorization checks

Business Object Settings
Constants Interface

Administrative Data
Fig. 13: Business Object header and ROOT node

BOB users will certainly miss the name proposals, especially for the ROOT node entities but also for the
Constants Interface.

Business Object Detail Browser Des... /m
@ Z_SALES_QUOTE BOBX T
~ = Node Structure
-G RooT Node Mame ROOT
» [Node Elernents Description

» [Consistency Group
Node Settings

Node Type Standard Node -
[Transient Mode
Data Model

Data Structure
Transient Structure
Combined Structure

Combined Table Type

Implementation

Mode Class

Data Access
Database Table

Fig. 14: ROOT node entities

Getting Started with - (Title Via Document Properties)

Propose Repository Names

The naming proposal can be created with the function Propose Repository Names in the menu Extras.

[Business Object Edit Goto Utilities |E-:t|§5 Environment System Help

@- - ‘(j @ i Propose Repository Mames E @

Generate Dictionary Elements
Maintain Business Object Z_S8, Generate Constant Interface

=~ /= ==

L N -— & f ol
Fig. 15: Propose Repository Names

On the following popup you can specify the details. You can just accept the default. It does not harm if you
marked too many check boxes, but the necessary ones are included in the selection.

[= Maintain Business Object Z_SALES_QUOTE, Active Version

Mamespace
Prefic I—ZS'QJ
1

Business Object Association

[v/| Constants Interface Name [Association Class Name
[|Parameter Structure Name
Action

Node [| Action Class Name

[v/| Combined Structure Mame ["|Parameter Structure Hame

[¥|Combined Table Type Name

[¥/| Data Structure Name Query

[|Data Structure Mame (transient) [l Query Class Hame

[INode Class Mame [Query Structure Name

[/| Database Table Mame
Alternative Key

[v|Data Type Mame
|#|Data Table Type Name

Determination Validation

[#|Determination Class Name [|Validation Class Name

<
¥

Fig. 16: Details of propose repository names pop-up

Corresponding to our actual definition, it is important that the following check boxes are marked:
Constants Interface Name

Combined Structure Name

Combined Table Type Name

Data Structure Name

Database Table Name.

=2 =4 =8 -8 -4

Use the namespace or prefix feature of this function. This supports you in a consistent naming. In case of
you are using the prefix, be aware, that the data dictionary names have certain restrictions. No underscore in

11

Getting Started with - (Title Via Document Properties)

the second position for example. A two character prefix without underscore suffices the restrictions. Our

naming proposal adds automatically an underscore after the prefix.

Confirm the popup with Enter to get the following proposals on BO header and root node level.

~ Business Object |
I ol
Business Object LtZ_SAI.ES_QUG-IE |, Active Version
Description 'BOBX Test to create a sales quote BO '
Object Category 'Business Process Object v

[|Business Object has Authorization checks

Business Object Settings

Constants Interface |ZIF 5Q Z SALES QUOTE C

Fig. 17: Result for the Business Object header

. Node |

MNode Name ROOT
Description ' '
| Node Settings
Node Type |Standard Node v

[Transient Mode

Data Structure 'ZSQ SRITD

Transient Structure

Combined Structure 'ZSQ 5 ROOT
Combined Table Type '25Q T ROOT

| Implementation

Mode Class

| Data Access

Database Table 'ZSQ D ROOT

Fig. 18: Result for the ROOT node

We have now created all the names for the objects we need in the BO configuration.

Create Persistent Structure

12

Getting Started with - (Title Via Document Properties)

In the next step we are going to define the persistent structure in the data dictionary. Double click the ROOT
node to open it in the editor. Double click on the data structure name. The system guides you through a
cascade of popups — save BO, assignment to package and transport request — you know from other
development objects. Confirm them accordingly.

Finally the data dictionary tool is opened and you can define the data structure for your persistency. Please

note that in older SPs the data elements used in the example do not yet exist. Use your own ones or use the
predefined type feature to enter the types directly.

Dictionary: Change Structure
&= P g) & B O3 Hierarchy Display Append Structure...

Structure Z3Q0 5§ ROOT D new(Revised)
=
Short Description I_Test Sales Quotel

Attributes . Components | Input Help/Check Currency/Quantity Fields

¥ 2B [=]E]] predefined Type | 1/2
Component Typing Method |Component Type Data Type |Length Deci.. !
QUOTE ID Types - |/BOBF/EEM 5Q ID CHLE 10]
JUOTE STATUS Types * /BOBF/EPM 50 STATUS CHAR 2 11

-
Fig. 19: Minimal persistent structure for the ROOT node

Assign an enhancement category, available in the Extras menu of the data dictionary and activate the

definition. You have to confirm again the package assignment and transportation popups. Return to the BO
editor by pressing F3.

Generate Data Dictionary Elements

Back in the BO editor we will generate the dictionary objects which are derived from the data structure
definition. You find the function Generate Dictionary Elements in the Extras menu of the BO Detall
Browser.

[Business Object Edit Goto Utiities | Extras | Environment System Help

@- - <| e { Propose Repository Mames 3 E i
Generate Dictionary Elerments
Maintain Business Object Z 8. Generate Constant Interface i;

OF% &

Business Object Detail Browser Des... “Node |
v B Z_SALES_QUOTE BOBX T

* = kMnda Stroictira
Fig. 20: Generate Dictionary Elements

Details can be specified on the following popup. But the defaults work in the straight forward case. So you
can just confirm them. As default the generated objects are active in the data dictionary. Thus you can start
working with them immediately. In case of generation problems (e.g. using reserved names for components
of the persistent data structure) the object is not activated. You can access the activation log in the data
dictionary to find the root cause for the activation problems.

The second default is that already generated objects are not regenerated.

13

Getting Started with - (Title Via Document Properties)

Note: Normallyyoudonotneed t o sel ect the function O0AlI Il owThever writ e
generated objects are using the include technology so that changes on the data structure apply automatically

to the generated objects.

Nevertheless in the beginning of a project, you may change your naming conventions and change the name

of the data structure. In this case the feature to regenerate is useful.

[Generate Dictionary Objects

Generation Control

[v| Activate generated dictionary objects

[JAllow overwrite of existing dictionary objects
I all
Enhancement category LGII be enhanced (character-like .. ~]

Mode Association
[|Data Structure [|Parameter Data Structure
|v|Combined Data Structure
[v|Combined Table Type Action
[|Mon-Unigue sorted by Key [|Parameter Data Structure

[v| Database Table
[IMode Category on Database Query
[¥|Database Index (Parent) [|Parameter Data Structure

Alternative Key
[¢|Key Table Type

Fig. 21: Selection according to our current object definition

The system confirms the success or failure of the generation and activation by the following popup. So you
get feedback of what the function has generated.

[

Message Descript.| Elerment Mame

@ Database table Z5Q D ROOT has been activated MNode ROOT
@ Database table Z5Q_D_ROOT has been created MNode ROOT
@ Structure ZSQ_S5_ROOT has been activated Mode ROOT
@ Structure Z5Q 5 ROOT has been created Mode ROOT
@ Table type Z5Q_T_ROOT has been activated Mode ROOT
@ Table type Z5Q_T _ROOT has been created MNode ROOT

Fig. 22: Generation protocol
Generate the business object

The last step before testing is the generation of the business object. But note that BOBX stores the data
always in an active version. All model changes are immediately active. The active/inactive handling as you

14

Getting Started with - (Title Via Document Properties)

know it from workbench objects is only available in the Eclipse tool. The generation button in BOBX executes
a consistency check of the model and regenerates the Constants Interface. Up to now we didn’t work with
the Constants Interface, but if you start implementing your ABAP classes for actions for example you will
need it.

Maintain Business Object Z_SALES QUOTE, Active Version

D[b?‘?

Business Object Detail Browser Des... Node
L] Z_SALES_QUOTE BOBX T
~ 3 Node Structure
- [@rooT Mode Mame ROOT
» [Node Elements Description

» (7 Consistency Group
Node Settings

Mode Type Standard Node -
[|Transient Node

Data Model

Data Structure Z50 5 ROOT D

Transient Structure

Combined Structure Z5Q 5 ROOT

Combined Table Type Z5Q T ROCT

Implementation

MNode Class

Data Access
Database Table Z5Q D ROOT

Fig. 23: Generate the Business Object

The function displays a protocol.

fa

Message Description Elernent Mame
@ Business object has been adjusted; see list of changes Business Object Version

@ Interface ZIF_S0Q 7 SALES QUOTE_C was generated successfuly Business Object Version

Fig. 24: Feedback of the generation

Test the BO

Now you can test the sales quote by pressing the test icon in the toolbar.

Maintain Business Object Z_SALES QUOTE, Active Version
DES? &

Business Object Detail Browser Des... / ;)
Business Object
~ &3 7 SALES QUOTE BOBX T

Fig. 25: Test the business object

The function opens the BO Test Environmentl (transaction BOBT) in a separate window. Create new
instances and save them.

15

Getting Started with - (Title Via Document Properties)

Business Object Builder: Test

[Z_SALES_QUOTE Earm <. BEZLE > &) (B [&][F
Z_SALES_QUOTE > ROOT
&l [@ e QUOTE_ID | QUOTE_STATUS
Mode Instances 1000 [N E_E
~ (@) Z_SALES_QUOTE
» @ ROOT

Fig. 26: Create new instances in the test tool

But you cannot select existing instances except if you know the internal key(GUID).

Business Object Builder: Test

[Z_SALES_QUOTE | > | & |

EREIERERIEE]

By Key » ROOT

» i ROOT

Fig. 27: Only the query by key is supported
Result

With this step we have created a working BO. But to achieve the same result as the creation wizard in BOB
we have to create two queries.

CREATE QUERIES

There are two types of queries which are provided by the framework out of the box. The SELECT_ALL
qguery, which just selects all instances of the BO and the SELECT_BY_ELEMENTS query selecting the
instances by using all elements of a node as selection parameter. In the next two chapters we will define
them.

Create SELECT_ALL Query

Open the Node Elements Folder and the ROOT node. Select the Create Query function in the right mouse
menu, either on the ROOT entry or on the Query folder.

16

Getting Started with - (Title Via Document Properties)

Business Object Detail Browser Des...
- @ Z_SALES_QUOTE BOBX T
~ Sl Node Structure
-) ROOT
¥ =1 Node Elements
~ @ ROOT
» [Static Properties
v [Associations
» [Determinations
v [validations
» (1 Actions
v :[(J Queries '
¥ [Alternative Create Query
v (1 Consistency Group Help

Fig. 28: Create Query

This opens the Query Editor. Enter SELECT_ALL as query name and press enter. The screen is reduced to

the relevant input fields. It is recommended to enter a description for documentation purposes.

" Query |

-
Query Mame SELECT_ALI

Description

Administrative Data
Creation
Last Changed

Fig. 29: SELECT_ALL query attributes
Create SELECT_BY_ELEMENTS Query

Create a new query using the right mouse menu. On the following screen enter the query name

SELECT_BY_ELEMENTS. For this query you need to define the filter structure. To enable all node attributes
as selection parameters, use the combined data structure of the ROOT node. You do not have to provide an

implementation — the query is supported by the framework.

17

Getting Started with - (Title Via Document Properties)

- Query

-
Query Name LSF.I.ECI_BE_EI.H![EETSI

Description
Query Settings

Implementation

Cuery Class
Fitter Structure Z5Q 5 ROOT

Adminictrative Nata
Fig. 30: SELECT_BY_ELEMENTS query attributes i use the combined data structure of the ROOT node

Generate the BO

You can generate the BO again. The Constants Interface is updated according to the BO definition.

Message
@ Business object is consistent

@ Interface ZIF_SQ 7 SALES QUOTE_C was generated successfully

Fig. 31: Generation protocol
Test BO

Restart transaction BOBT to test the queries.
Business Object Builder: Test

|Z_SALES_QUOTE EAra ' @
Z_SALES_QUOTE > RC
EWEAUCRER] EA: QUOTE_ID QUOTE_S
By Query » ROOT-SELECT_ALL
By Key »| ROOT - SELECT_BY_ELEMENTS

e WY 1_

Fig. 32: The queries are executable in BOBT
Result

We created a BO step by step manually and achieved the same result as with the BO creation wizard in the
transaction BOB or in Eclipse. We learned how the tool works: there is no implicit generation or convenience
function. After creating an element you have to use the Propose Repository Name function to generate a
consistent naming and the Generate Dictionary Elements function to generate the derived DDIC artifacts.
The only convenience the tool offers is the Generate function, executing a consistency check and adapting
the Constants Interface to the new definition.

18

Getting Started with - (Title Via Document Properties)

CREATE SUBNODE

In this chapter we will create the subnode ITEM to the ROOT node. You will see that the most important
utilities are again: Propose Repository Names, Generate DDIC Elements, and the Generate button.

Select the node which should be the parent of the subnode, so in this example select the ROOT node in the
Business Object Detail Browser and open the right mouse menu. The menu contains the Create Subnode
function. In the transaction BOB, you can only create Standard Nodes. BOBX offers more node types.
Beside the standard node you can embed dependent objects (Delegated Node) and create cross BO
associations (Business Object Representation Node). We are not going to describe these node types. This
will be subject of further tutorials.

So select the Standard Node function in the menu.

Business Object Detai Browser Description B m
ML Z_SALES QUOTE BOBX Test to create a3
* Sl Node Structure _ _
e — . Business Ohiect
' [:IIT‘wlnde Create Subnode 3 Standard Node
» [JConsi Delete Node Delegated Node
Deatails Business Object Representation Mode act
Help

Business Object !

Fig. 33: Select the Create Standard Node function in the right mouse menu

The subnode editor opens, enter the node name ITEM.

Business Object Detail Browser Description Node |
~ & Z_SALES_QUOTE BOBX Test to create a ™
~ ‘S Node Structure F . =
- @ ROOT Node Name I_Ir:e)
@ Description
* (I Node Elements
» [consistency Group Node Settings
Node Type Standard Node -
Transient Mode
Data Model
Data Structure

Transient Structure
Combined Structure
Combined Table Type

Implementation

Node Class

Data Access
Database Table

Fig. 34: Enter the name of the Subnode

Use the Propose Repository Names in the Extras menu, to get naming proposals for all necessary
artifacts. The names for some DDIC artifacts — e.g. database tables - require that the there is no underscore
on the second or third position of the name. Thus we enter a prefix to avoid error messages. The artifacts we
need are already checked. You can just accept the defaults. The feature does not overwrite existing names.
Therefor you do not have to care for having marked too many check boxes.

The check boxes Data Structure Name (transient) and Node Class Name are not marked by default. You
only have to check them if you have to deal with transient data in the first case or in the second case if you

19

Getting Started with - (Title Via Document Properties)

need a class to set dynamically properties, like the mandatory or read only attribute for a field. As these are

optional features, they are not marked by default.

[E Maintain Business Object Z_SALES_QUOTE, Active Version

Mamespace

I’reﬁ:-: I ZS'QJ

Business Object
[v| Constants Interface Name

Node

[+ Combined Structure Mame
[¥|Combined Table Type Name

[+ Data Structure Name

|| Data Structure Name (transient)
["TMode Class Name

[¥|Database Table Name

Determination

[¥| Determination Class Name

Fig. 35: Necessary node artifacts

After having confirmed the popup, the proposed names are displayed in the node editor.

Association
[| Association Class Name

[|Parameter Structure Name

Action
[w] Action Class Name

[|Parameter Structure Name

Query
[1Query Class Name
[1Query Structure Name

Alternative Key

[w|Data Type Name
[w|Data Table Type Name

Validation

[v|validation Class Name

20

Getting Started with - (Title Via Document Properties)

~ Node |
Node Name ZITEH
Description
Mode Settings
Mode Type Standard Mode -
| Transient Node
Data Model
Data Structure Z5Q 5 ITEM D
Transient Structure
Combined Structure Z5Q 5 ITEM

Combined Table Type Z5Q T ITEM

Implementation

Mode Class
Data Access
Database Table Z5Q D ITEM

Fig. 36: Result of the naming proposal feature

The only artifact you have to maintain manually is the Data Structure. Select it via double click and after
some popups concerning data loss and transportation you will navigate to the DDIC where you can define

the data structure.
Dictionary: Change Structure
= P | qu o 2 | S B 5 Hierarchy Display Append Structure...

s -1l
Structure 2 50 5 ITEM p | Active
Short Description BOBX Demo Sales Quote Items

Attributes - Components } Input Help/Check Currency/Quantity Fields

|| B B[4 predefined Type | 1/4
Component Typing Method |Component Type | Data Type | Length Deci.. |Short Description
ITEM POSITION Types « |SNWD 50 ITEM POS CHAR 10 0 EPM: Sales Order Item Position
FRODUCT ID Types * |/BOBF/EFM FRODU. CHAR 14 0BOPF EPM Product Id
QUANTITY Types * SNWD QUANTITY QUAN 13 3 EPM: Quantity
QUANTITY UNIT Types * SNWD QUANTITY U. UNIT 3 0 EPM: Quantity Unit

-

Fig. 37: Define the data structure of the node in the DDIC

In our example we are using quantities, so we have also to care for establishing a relationship between the
guantity and the currency field in the DDIC. This is standard DDIC behavior.

Getting Started with - (Title Via Document Properties)

Dictionary: Change Structure
C A A O - T = < - O = = Hierarchy Display ~ Append Structure...

Structure [zsq s 1TEM D | Active

Short Description |BOBX Demo Sales Quote Items
Attributes }‘ Components |‘ Input Help/Check / Currency/Quantity Fields]

Component Typing Method Component Type Data T... Reference table Ref. field Short Description
ITEM FOSITION Types w SNWD_50_ITEM POS CHAR EPM: Sales Order Item Position

QUIANTITY Iypes > SNWD QUANTITY

SHAD DAanC L d
QUAN Z5Q 5 ITEM D QUANTITY UNIT EPM: Quantity
T Types WETND QUANTITE Do OnLT EPM: Guan 0

-

Fig. 38: Define the relationship between quantities and units

After having activated the DDIC definition, return to the BO tool using the F3 button. We can generate the
derived DDIC artifacts in using the function Generate Data Dictionary Elements in the Extras menu. Again

you can just accept the defaults in the following popup.

| Generation Control

[Activate generated dictionary objects
[Allow overwrite of existing dictionary objects
Enhancement category ‘Can be enhanced (character-ike . =

[|Parameter Data Structure

[v|Combined Table Type | Action
[IMon-Unigue sorted by Key [|Parameter Data Structure

[v|Database Table
[IMode Category on Database | Query

[|Database Index (Parent) [|Parameter Data Structure
[Extension Include

| Alternative Key
[¢|Key Table Type

Fig. 39: Generate Data Dictionary Elements - accept the defaults .
The genearation log gives you an overview of what has been done during generation. You can verify, that

the artifacts for the ROOfode have not been touched. Only those for the newly created ITEM node have
been created and successfully activated.

22

Getting Started with - (Title Via Document Properties)

Message Descript. | Element Name

@ Database index Z50Q_D_ITEM has been activated MNode ITEM
@ Database index ZSQ_D_ITEM has been created Mode ITEM
@ Database table ZSQ_D_ITEM has been activated MNode ITEM
@ Database table Z5Q_D_ITEM has been created Mode ITEM
@ Structure Z5Q_D_ROOT already exists Mode ROOT
@ Structure Z50Q S ITEM has been activated Mode ITEM
@ Structure Z5Q_S_ITEM has been created MNode ITEM
@ Structure Z50_S_ROOT already exists Mode ROOT
@ Table type Z5Q_T_ITEM has been activated Mode ITEM
@ Table type ZSQ_T_ITEM has been created MNode ITEM
@ Tzble type ZSQ_T_ROOT already exists Mode ROOT
Fig. 40: Generation log for the subnode artifacts

Generate the BO with the Generate Button. You are done now creating the subnode. Press the Test button
or F8 and the test tool opens in a separate window. Create and change your items.

Result

You have created a BO with a subnode which is much more comfortable using BOB. The goal was to show
you the mechanics of the BOBX tool, so that you can use it, when you come across the limitations of BOB. In
the next chapter we will create an action, to show the relationship to the class builder.

CREATE AN ACTION

In this chapter we will create an action on the ROOT node. Again the most important utilities are: Propose
Repository Names, Generate Data Dictionary Elements, and the Generate button.

Open the Business Object Detail Browser for the Sales Quote BO. Switch to the edit mode. Elements
defining the behavior of a BO like actions, determinations and validations are displayed in the Node Element
subtree. Open this subtree. In the right mouse menu on the ROOT node you will find the function to create
actions. Select this function.

Maintain Business Object Z_SALES QUOTE, Active
OE % a2

Business Object Detail Browser Description
v Z_SALES QUOTE BOBX Test to create 3
v [(JNode Structure i
~ & Node Elements
r@QImEM
. EQ--BHHT —I
v CIcons Create r Create Association
Where-Used List Create Determination
Expand Subtree Create Validation »
Deatails Create Action '
Help Create Query

Create Alternative Key

Fig. 41: Select Create Action in the right mouse menu

23

Getting Started with - (Title Via Document Properties)

On the next screen, enter the name of the action and the cardinality. For performance reasons you should
always enable the business logic for mass data processing. Therefor select the cardinality Multiple Node

Instances.

Maintain Business Object Z_SALES QUOTE, Active Version

OE %

ge &

Business Qbject Detail Browser
~ @ Z_SALES_QUOTE
¥ [Node Structure
~ 1 Node Elements
¥ 2 ITEM
* @ ROOT

(7 static Properties
(1 Associations

(1 Determinations
(1 validations

~ &9 Actions

Fig. 42: Enter the action name and the cardinality

- &8
7 Queries
(7 Atcernative Keys

Action |

Action Name Lbubllsh

Description

Action Settings

Action Cardinality Multiple Mode Instances -

Implementation

Class/Interface
Parameter Structure

To get a consistent naming across your application, use the function Propose Repository Names in the
Extras menu. The necessary elements for an action are already selected. Actions may have parameters in
addition to the selected node ids. As this element is optional, the check box for proposing the parameter
structure name is not selected by default. Again only names for new entities are proposed independent of
the selection on the screen. So you cannot overwrite by mistake already working element names.

24

Getting Started with - (Title Via Document Properties)

[Maintain Business Object Z_SALES_QUOTE, Active Version

Mamespace
Prefix Tzsq] 1
= =
| Business Object | | Association
[| Constants Interface Name [| Association Class Name
[~ |Parameter Structure Name
[Action |
| Node | § [Action Class Name
|| Cornbined Structure Name [JParameter Structure Name
[¥|Combined Table Type Name
[*| Data Structure Name | Query
[|Data Structure Name (transient) [Query Class Name
[IMode Class Name [Query Structure Name

[¥|Database Table Name
Alternative Key

[¥|Data Type Name
[¥|Data Table Type Name

Validation

| Determination |

|| Determination Class Mame [|Validation Class Name

Fig. 43: Select the check box to propose the action class name

Confirm the proposal.

,_/hch'm], Read & Write Nodes |, Mode Category Assignment |* Property Change Trigger

Action Name ’ |FUBLISH
I 1

Description

| Action Settings

Node 'ROOT v
Action Category ' Object-Specific Action v
Action Cardinality 'Multiple Node Instances -
Change mode | Exclusive Write Mode v/

[|Execute Action only if it can be executed for all NodelIDs
Implementation

Class/Interface |ZCL SO A PUBLISH

Parameter Structure

Fig. 44: Naming proposal for an action

25

Getting Started with - (Title Via Document Properties)

Generate the business object. The protocol shows that the constants interface has been regenerated.

s

Message Description Elerment Mame
@ Business object has been adjusted; see list of changes Business Object Version
@ Interface ZIF_SQ_7 SALES_QUOTE_C was generated successfuly Business Object Version

Fig. 45: Generation Protocol
Navigate to the implementation class

The last step is to implement the action. Double click the class name and navigate to the implementation.
After some popups concerning warnings and transport attributes, enter the implementation in the class
editor.

The following code shows how you can set the quote status to published.

METHOD/bobf/if_ frw_action ~execute

DATA Ir_root TYPE REF TO zsqg_s _root . " Combined structure
DATA It_changed_fields TYPE /bobf/t_frw_name
DATA Is_key TYPE /bobf/s_frw_key

Prepare update information
CREATEDATA Ir_root
Ir root ->quote _status = 'P' . "Published
APPENDzif_ sg_z_ d_sales _quote_c =>sc_node_attribute -root - quote_status
TO It_changed_fields

Do update
LOOPAT it_key INTO Is_key
io_modify - >update (

EXPORTING
iv_node = zif sq_z_d_sal es _quote c =>sc_node -root
iv_key = Is_key -key
is_data = Ir_root
it changed_fields = It_changed_fields).
ENDLOOP
ENDMETHQD

Note: ABAP 7.40 offers a more concise Syntax. You will find this example using the new syntax in the Annex.

Adapt the code to your objects (constants interface, combined structure) and activate the class. Test the action with the
BOPF test tool BOBT.

Result

We have re-implemented the scope of the Getting started with Business Object Processing Framework
tutorial. The standard practice in BOBX is:

1 create an element via right mouse menu in the BO Detail Browser

9 define the name of the element

1 use the utilities in the Extras menu

26

Getting Started with - (Title Via Document Properties)

In the following chapters we document the utilities you come across when working with BOBX.
UTILITIES
Propose Repository Names

The function Propose Repository Names in the Extras menu supports you in using a consistent naming in
your application. In smaller projects this is not so important, but in large projects it helps to keep on overview
of the artifacts. And finally the developer has less to type.

x
Mamespace
Prefix Z3g
Business Object Association
«|Constants Interface Name Association Class Mame
Parameter Structure Name
Action
Mode | Action Class Name
| Combined Structure Name Parameter Structure Name
+|Combined Table Type Name
| Data Structure Mame Query
Data Structure Mame (transient) Query Class Name
Mode Class Name Query Structure Name
+/|Database Table Name
Alternative Key
v |Data Type Mame
«'|Data Table Type Mame
Determination Validation
| Determination Class Mame « | Validation Class Mame
v %]

Fig. 46: Propose Repository Names

A popup shows all object types for which names are possibly necessary. The object types are grouped by
BO elements. The mandatory object types for each element are already marked. Nodes need for example
the definition of a data structure, a database table name, a structure for the runtime types (combined
structure including keys, persistent and transient structure) and the respective table type. Whereas
associations for example do not need any further attributes if they are modelled. So there is nothing marked
by default.

You can use this function at any time you create a new element in the BO. You do not have to care for the
marked check boxes as the function does not overwrite existing names. So you can focus on the attributes of
the element you just created.

In the top of the popup you can define a namespace or a prefix for the naming proposal. Take care not to
violate DDIC naming conventions if you need a name proposal for DDIC objects — avoid underscores at the
second and third position by choosing an appropriate prefix.

27

Getting Started with - (Title Via Document Properties)

Generate DDIC Objects

The function Generate DDIC Objects in the Extras menu generates all DDIC objects you need for working

with the BO.

(S Generate Dictionary Objects

Generation Control

[w] Activate generated dictionary objects

[Allow overwrite of existing dictionary objects

I ol
Enhancament category L{)an be enhanced (character-lke .. |

Mode
[| Data Structure
|v| Combined Data Structure
[¢|Combined Table Type
[INon-Unigue sorted by Key
|| Database Table
[|Node Category on Database
[Database Index (Parent)

Association

[|Parameter Data Structure

Action

[|Parameter Data Structure

Query

[|Parameter Data Structure

Alcernative Key
[|Key Table Type

V%]

LFig. 47: Generate DDIC Objects

The function can be parameterized on a popup. Necessary objects are already marked by default.

It is proposed to activate the DDIC objects. Normally there is no need for reworking the generated objects.
Objects which are generated are not overwritten by default. As the generated objects are working with the
include technique, there is normally no need for regeneration. But in the beginning of modelling you may
want to change the name of the persistent structure for example. In this case you should actively trigger the

regeneration by marking the checkbox.

Last but not least you can specify the enhancement category for the DDIC objects.
Constants Interface

The constants interface contains the constants derived from the model which you need to use the BOPF
APIs. If you want to read data, you have to specify the BO-name, the node name and the association you
want to follow. It may happen that you need only selected data, so you may want to specify the elements to
be selected. For all these entities you will find constants in the interface.

The constants interface is assigned at the BO level, so you need only to know one for the complete BO. This
interface is implicitly generated at each time you activate the BO — either in Eclipse or in BOBX.

28

Getting Started with - (Title Via Document Properties)

The regeneration of the constants interface can be triggered explicitly in the Extras menu. This function is
useful after you changed a database object; e.g. added a new field in the persistent structure. The activation
of the DDIC object does not trigger the regeneration of the constants interface.

Check

This function checks the consistency of the model. For example you will be warned if the implementation of
an action is missing, if the mandatory DDIC objects are inactive or if the trigger condition for a determination
is missing. Some of the inconsistencies lead to a dump during runtime like a missing implementation class
for an action. Some of the inconsistencies lead to a semantically incorrect behavior like validations which are
not executes when the triggers are not maintained.

Message Help Description Element Mame
i@ Class ZCL 5Q D_INCOMPLETE DETERMINAT of Determination INCOMPLETE DETERMINATION does not exist in the repository Determination ROOT~INCOMPLETE_DETERMINATION
i@ Chss/interface ZCL_SQ_A_PUBLISH of Action PUBLISH has syntax errors Action ROOT~PUBLISH
@ No evaluation timepoint @ Determination ROOT~INCOMPLETE_DETERMIMATION
@ 7Z5Q_S_ITEM_D does not exist in an active version Node ITEM
£ Determination INCOMPLETE_DETERMINATION is never executed because requesting nodes are not defined Determination ROOT~INCOMPLETE_DETERMINATION
£y Determination cannot be called because it is not enabled for any node category Determination ROOT~INCOMPLETE_DETERMINATION

Fig. 48: List of inconsistencies

The inconsistencies are displayed in the message area of the tool. Double click on a message to navigate to
the error location.

Note: Inconsistencies do not prevent the BO of being executed. During the development phase it may be
useful for example not to trigger a determination as it is not yet ready. For testing purposes you may add or
remove a trigger to compare the results. But we advise to run the Check function before releasing a BO for
productive usage.

Check and Generate

Generation in BOBX executes the consistency check and generates the constants interface.

Note: In the ABAP workbench you are used to the functions activate and generate. Our backend tools (BOB
and BOBX) do not support inactive versions. The Eclipse tool supports this ABAP Workbench feature. If your
team is working with the Eclipse tool and BOBX in parallel, BOBX displays inactive objects. But you cannot
switch to the edit mode. You have to activate the BO in Eclipse before continuing with BOBX.

SUMMARY

We have seen how to proceed with BOBX to create and modify business objects. BOBX is less convenient
as BOB as the steps have to be executed explicitly. On the other hand you can use the complete feature set
of BOPF to define your BO.

The most important functions are: Propose Repository Names, Generate Data Dictionary Elements, Check
and Check and Generate. This applies for all elements in the BOPF model. Now discover new features not
offered by BOB like the definition of alternative keys, the embedding of dependent objects or modelled
associations. The features will be described in further tutorials using the Eclipse tool. Only if BOBX differs too
much, these features will also be described in dedicated BOBX tutorials.

29

Getting Started with - (Title Via Document Properties)

ANNEX

Find here the implementation of the action to set the status of the sales quote to the status ‘published’ in the

new concise ABAP syntax. This syntax can be used with ABAP 7.40.

METHOD /bobf/if_frw_actio n~execute.

" Prepare update information
DATA(Ir_root) = NEW zsq_s_root().
Ir_root ->quote_status = 'P". "Published

" Do update
LOOP AT it_key INTO DATA(Is_key).
io_modify - >update(

EXPORTING
iv_node = Zi f sq_z sales_quote _c=>sc_node - root
iv_key =Is_key - key
is_data =Ir_root
it_changed_fields = VALUE #((
zif sq_z sales_quote_c=>sc_node_attribute -root - quote_status))).
ENDLOOP.
ENDMEROD.

30

	Before you start
	Objectives
	Prerequisites
	Systems, releases, and authorizations
	Knowledge

	Navigatigating the BO
	Business Object Browser
	Business Object Detail Browser
	Result

	Create a BO
	Start the creation wizard
	Propose Repository Names
	Create Persistent Structure
	Generate Data Dictionary Elements
	Generate the business object
	Test the BO
	Result

	Create Queries
	Create SELECT_ALL Query
	Create SELECT_BY_ELEMENTS Query
	Generate the BO
	Result

	Create Subnode
	Result

	Create an Action
	Navigate to the implementation class
	Result

	Utilities
	Propose Repository Names
	Generate DDIC Objects
	Constants Interface
	Check
	Check and Generate

	Summary
	Annex

