

Using SAP Enterprise Service with
Microsoft’s Windows
Communication Foundation: The
Handling of GDT’s

Applies to:
SAP Enterprise Service, Global Data Types, Microsoft WCF, Healthcare Industries Patient Administration

For more information, visit the Interoperability - .NET homepage.

Summary
Integrating web services is not always an easy task, especially when different technologies are involved. In
this article we address the consumption of SAP Enterprise Services (SAP ES) with Microsoft’s Windows
Communication Foundation (WCF). Every web service technology has the ability of building reusable types
that can be used in different services. In SAP ES these types are called Core Data Types (CDT) or Global
Data Types (GDT) and published in the “Data Type Catalogue - Definitions of Global Data Types and Core
Data Types”. If your task is only the integration of only one service in your WCF application, the standard
Microsoft NET 3.5 tool svcutil.exe (Service Model Metadata Utility Tool) works well. But if your task is the
integration of many services, you will not import the same basic type n times in your project. So this paper
gives you some hints for solving this problem.

Author: Andreas Ascher

Company: Meierhofer AG

Created on: 19 October 2008

Author Bio
Andreas Ascher received his degree (Dipl.-Inform. Univ.) In computer science 1995 from the
University of Passau. Since 2000 he is working as senior developer for the MEIERHOFER AG,
the software producer of the medical information system MCC. His main interest is the
application integration in health care enterprises.

Acknowledgement
The result of this paper was inspired by the PCDG Healthcare Industries Patient Administration v.2 between
SAP AG and MEIERHOFER AG. Claudius Metze, Bettina Liske, Christian Stark and Dirk Riemer deserve
credit for making this paper possible, through their feedback and advice. Thanks go out to Nektarios Dourdas
and other peoples from SAP behind the stage, who supplies us with additional material. Last but not least,
special thanks go to the MEIERHOFER AG, especially Markus Rathmayer for giving me the opportunity to
write this article.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 1

https://www.sdn.sap.com/irj/sdn/dotnet

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

Table of Contents
The Problem ...3

Consuming SAP Enterprise Services...3
The GDT Import Problem...3

The Approach..4
The Strategy ..4
Steps Generating Code ...6

Related Content..11
Copyright...12

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 2

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 3

The Problem

Consuming SAP Enterprise Services

In [1] is basically shown how you can obtain and consume SAP Enterprise Services in a WCF Development
Environment. Note there is an important difference comparing the WCF approach, we state as premise 1:

Note: The metadata of a SAP Enterprise Service is distributed in one flat WSDL file, containing all information’s that are
necessary to generate code.

Secondly, if you concern in detail with SAP ES, you will notice, that SAP has build a big type system that is
used throughout Enterprise Services.

Note: SAP has developed a type system, of types that are common used in SAP ES and are published in the Data Type
Catalogue - Definitions of Global Data Types and Core Data Types1.

As an example we give the distribution of types of two services in a venn-diagram.

The GDT Import Problem

If your job is the implementation of an integration between your application and an SAP Business Solution by
SAP ES, normally you will have to consume not one but n services. The aim, when importing n WSDL files,
is to generate code for a GDT only once, because nobody wants to code the logic of mapping between your
internal types to global data types more than once.

Regrettably, the WCF on board remedy svcutil.exe (Service Model Metadata Utility Tool) works not adequate
for this task. Let us a have a short look why.

1 With the term GDT’s in this paper we often reference GDT’s and CDT’s.

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 4

WCF advocates an explicit contract based approach in building web service applications. This includes

• The type declaration is normally done in a programming language via special attributes (e.g.
DataContract, DataMember).

• When mapping a data contract into xml schemas, only a subset is used for improving the
interoperability between WCF applications (the process of building metadata from code and vice
versa).

• The serialization is called data contract serialization2.

When svcutil recognize data contracts in wsdl metadata it is a powerful tool. So you can e.g. exclude data
contract types that are already in a referenced assembly.

Naturally the tool does not recognize data contracts in wsdl files of SAP ES, hence many advanced options
are not possible. So we research for another solution.

The Approach

Fortunately, the NET 3.5 framework ships with classes, which gives you the opportunity to write your own
code generator when importing WSDL files.

The Strategy

First we give a short diagram of our strategy3.

We assume, we have to integrate n SAP Enterprise services given in n WSDL files in our project. Design
your own repository4 that holds information about types you have already imported.

The first task is to import the WSDL files and resolve the metadata generating contract information for all
types. Then ask your repository “is the type already imported”. If so skip the type, otherwise generate the
code file for the type and update your repository.

2 The standard serialization when working with arbitrary WSDL metadata is called xml serialization.
3 Note that we handle all WSDL-types in this manner, not only GDT’s
4 As repository we simply assume a place, where information about imported types is persistent. Actually we keep this information only
in our project files, but we take also into account to use a database for documenting additional information.

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 5

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

Steps Generating Code

Now have a look at some code. We show only the basic ideas, Please contact Microsoft’s MSDN for further
information.

Read WSDL and Get The Contracts

In the .NET Framework the class MetadataSet represents a serializable collection of service metadata in
XML form. The XML representation is imported (class WSDLImporter) and contracts (class
ContractDescription) are identified. From these contracts contract types – the input of the code generator -
are build (class ServiceContractGenerator).

See the following Listing:

private ServiceContractGenerator ResolveImports(string url)
{
 // Represents a serializable collection of service metadata in XML form
 MetadataSet metadataSet = new MetadataSet();

 // using wsdl file instead of online metadata exchange
 // complicates the import a little bit
 // we use here the DiscoveryClientProtocol class
 DiscoveryClientProtocol dcp = new DiscoveryClientProtocol();
 dcp.Credentials = CredentialCache.DefaultCredentials;
 dcp.AllowAutoRedirect = true;
 dcp.DiscoverAny(url);
 dcp.ResolveAll();

 // now build the MetadataSet
 foreach (object osd in dcp.Documents.Values)
 {
 if (osd is System.Web.Services.Description.ServiceDescription)
 {
 MetadataSection mds =
 MetadataSection.CreateFromServiceDescription(
 (System.Web.Services.Description.ServiceDescription) osd);
 metadataSet.MetadataSections.Add(mds);
 continue;
 }
 if (osd is XmlSchema)
 {
 MetadataSection mds = MetadataSection.CreateFromSchema((XmlSchema)osd);
 metadataSet.MetadataSections.Add(mds);
 continue;
 }
 }

 // Import the MetadataSet
 WsdlImporter importer = new WsdlImporter(metadataSet);

 // and get the ContractDescription of Windows Communication Foundation Contracts
 Collection<ContractDescription> contracts = importer.ImportAllContracts();

 // The class ServiceContractGenerator helps us to generate the types
 ServiceContractGenerator generator = new ServiceContractGenerator();

 foreach (ContractDescription contract in contracts)
 {

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 6

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

 // now generate service contract types
 // these type are the base for generation code
 generator.GenerateServiceContractType(contract);
 }

 return generator;
}

Generate the Code

In the next step we have to generate the code files. The necessary classes are in the namespace
System.CodeDom.Compiler.

We give two short listings. The first listing shows how to iterate above all type and the usage of a possible
repository.

private void GenerateCodeFromServiceContractGenerator(
 ServiceContractGenerator generator,
 YourRepository repository)
{
 // iterate above all types
 foreach (CodeNamespace cn in generator.TargetCompileUnit.Namespaces)
 {
 foreach (CodeTypeDeclaration ctd in cn.Types)
 {
 // query your Respository concerning the type
 if (!repository.ExistsType(cn, ctd))
 {
 // support a function that generates unique filenames for a type
 string fileName =
 repository.BuildUniqueCodeFileName(cn, ctd);

 // update your Respository with rhe type info
 repository.InsertTypeInfo(cn, ctd, fileName);

 // and generate the source code file
 this.GenerateCodeFromTypeDeclaration(fileName, cn, ctd);
 }
 }
 }
}

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 7

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

The second listing generates the source code file.

private void GenerateCodeFromTypeDeclaration(string filename,
 CodeNamespace cn, CodeTypeDeclaration ctd)
{
 // We want to generate C# code
 System.CodeDom.Compiler.CodeGeneratorOptions options =
 new System.CodeDom.Compiler.CodeGeneratorOptions();
 options.BracingStyle = "C";
 System.CodeDom.Compiler.CodeDomProvider codeDomProvider =
 System.CodeDom.Compiler.CodeDomProvider.CreateProvider("C#");

 // Create a TextWriter
 System.CodeDom.Compiler.IndentedTextWriter methodWriter =
 new System.CodeDom.Compiler.IndentedTextWriter(
 new System.IO.StreamWriter(filename));

 // we add some comments to the generated source code file
 // namespace and name of the type, and the source wsdl file name
 CodeCommentStatement ccs1 =
 new CodeCommentStatement(
 "Namespace:" + cn.Name +
 "." + ctd.Name);
 CodeCommentStatement ccs2 =
 new CodeCommentStatement("Source:" +
 this.CurrentSourceWSDLFileName);
 ctd.Comments.Add(ccs1);
 ctd.Comments.Add(ccs2);

 // write using and namespace declaration
 foreach (CodeNamespaceImport cni in cn.Imports)
 {
 methodWriter.WriteLine("using " + cni.Namespace + ";");
 }

 if (this.DefaultNameSpace != string.Empty)
 methodWriter.WriteLine("using " + this.DefaultNameSpace + ";");

 // when no namespace is given in the wsdl,
 // we use a default namespace from this.DefaultNameSpace
 bool useNamespace = (cn.Name != string.Empty ||
 this.DefaultNameSpace != string.Empty);

 if (useNamespace)
 {
 methodWriter.WriteLine("namespace " +
 (cn.Name != string.Empty ? cn.Name : this.DefaultNameSpace));
 methodWriter.WriteLine("{");
 }

 // generate the code for the type
 codeDomProvider.GenerateCodeFromType(ctd, methodWriter, options);

 // close } when using namespaces
 if (useNamespace)
 {

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 8

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

 methodWriter.WriteLine("}");
 }

 methodWriter.Close();
}

A Sample Result

As conclusion we give a sample result. The GDT type Note may have the following encoding in your WSDL-
file.

<xsd:complexType name="Note">
 <xsd:annotation>
 <xsd:documentation xml:lang="EN">
 <ccts:RepresentationTerm>Note</ccts:RepresentationTerm>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="languageCode" type="LanguageCode"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
No have a look at the generated code file:
using YourNamespace;
namespace YourNamespace
{
/// <remarks/>
// Namespace:.Note
//
Source:C:\Projekt\MCC.NET\Eai\PatientManagement\SAPEnterpriseService\SAPEnterpriseSer
vice\WSDL\Create_Patient_Encounter.wsdl
[System.CodeDom.Compiler.GeneratedCodeAttribute("Mag.Mcc.Tools.WCFHelper",
"1.0.0.0")]
[System.SerializableAttribute()]
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.ComponentModel.DesignerCategoryAttribute("code")]
[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://sap.com/xi/IS-
H/Global2")]
public partial class Note
{

 private string languageCodeField;

 private string valueField;

 /// <remarks/>
 [System.Xml.Serialization.XmlAttributeAttribute(DataType="language")]
 public string languageCode
 {
 get
 {
 return this.languageCodeField;
 }
 set
 {
 this.languageCodeField = value;

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 9

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

 }
 }

 /// <remarks/>
 [System.Xml.Serialization.XmlTextAttribute()]
 public string Value
 {
 get
 {
 return this.valueField;
 }
 set
 {
 this.valueField = value;
 }
 }
}
}

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 10

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

Related Content
 [1] Boris Mueller, SAP AG, How to Consume Enterprise Services with Microsoft .NET 3.0 and Visual Studio
2005

[2] Steve Resnick, Richard Crane, Chris Bowen, Essential Windows Communication Foundation (WCF)
(2008)

[3] Microsoft MSDN .NET Framework 3.5 Home Page

For more information, visit the Interoperability - .NET homepage.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 11

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/905c28e4-38a9-2910-4db5-d39e4fcbf78b
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/905c28e4-38a9-2910-4db5-d39e4fcbf78b
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
https://www.sdn.sap.com/irj/sdn/dotnet

 Using SAP Enterprise Service with Microsoft’s Windows Communication Foundation: The Handling of GDT’s

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 12

Copyright
© 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries,
zSeries, System i, System i5, System p, System p5, System x, System z, System z9, z/OS, AFP, Intelligent Miner, WebSphere,
Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5, POWER5+, OpenPower and PowerPC are trademarks or registered trademarks of
IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All
other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the
express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

These materials are provided “as is” without a warranty of any kind, either express or implied, including but not limited to, the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials.

SAP does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these
materials. SAP has no control over the information that you may access through the use of hot links contained in these materials and
does not endorse your use of third party web pages nor provide any warranty whatsoever relating to third party web pages.

Any software coding and/or code lines/strings (“Code”) included in this documentation are only examples and are not intended to be
used in a productive system environment. The Code is only intended better explain and visualize the syntax and phrasing rules of
certain coding. SAP does not warrant the correctness and completeness of the Code given herein, and SAP shall not be liable for errors
or damages caused by the usage of the Code, except if such damages were caused by SAP intentionally or grossly negligent.

	Applies to:
	Summary
	Author Bio
	Acknowledgement
	Table of Contents
	The Problem
	Consuming SAP Enterprise Services
	The GDT Import Problem
	The Approach
	The Strategy
	Steps Generating Code
	Read WSDL and Get The Contracts
	Generate the Code
	A Sample Result

	Related Content
	Copyright

