

SAP NetWeaver

How-To Guide

How To Consume A Gateway Service

In JavaScript.

Applicable Releases:

SAP NetWeaver 7.02 ≥SP7 + SAP NetWeaver Gateway 2.0 ≥SP1 add-on

SAP ERP 6.0 or higher

IT Practice / Topic Area:

SAP NetWeaver Gateway

IT Scenario / Capability:

Consumption of a Gateway Service using JavaScript

Version 1.0

September 2011

© Copyright 2011 SAP AG. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or for any purpose without the

express permission of SAP AG. The information contained

herein may be changed without prior notice.

Some software products marketed by SAP AG and its

distributors contain proprietary software components of

other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are

registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel

Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,

OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP,

Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix,

i5/OS, POWER, POWER5, OpenPower and PowerPC are

trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader

are either trademarks or registered trademarks of Adobe

Systems Incorporated in the United States and/or other

countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered

trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,

WinFrame, VideoFrame, and MultiWin are trademarks or

registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or

registered trademarks of W3C®, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,

Inc., used under license for technology invented and

implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP

NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are

trademarks or registered trademarks of SAP AG in

Germany and in several other countries all over the world.

All other product and service names mentioned are the

trademarks of their respective companies. Data contained

in this document serves informational purposes only.

National product specifications may vary.

These materials are subject to change without notice.

These materials are provided by SAP AG and its affiliated

companies ("SAP Group") for informational purposes only,

without representation or warranty of any kind, and SAP

Group shall not be liable for errors or omissions with

respect to the materials. The only warranties for SAP

Group products and services are those that are set forth in

the express warranty statements accompanying such

products and services, if any. Nothing herein should be

construed as constituting an additional warranty.

These materials are provided “as is” without a warranty of

any kind, either express or implied, including but not

limited to, the implied warranties of merchantability,

fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including

without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials.

SAP does not warrant the accuracy or completeness of the

information, text, graphics, links or other items contained

within these materials. SAP has no control over the

information that you may access through the use of hot

links contained in these materials and does not endorse

your use of third party web pages nor provide any warranty

whatsoever relating to third party web pages.

SAP NetWeaver “How-to” Guides are intended to simplify

the product implementation. While specific product

features and procedures typically are explained in a

practical business context, it is not implied that those

features and procedures are the only approach in solving a

specific business problem using SAP NetWeaver. Should

you wish to receive additional information, clarification or

support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”)

included in this documentation are only examples and are

not intended to be used in a productive system

environment. The Code is only intended better explain and

visualize the syntax and phrasing rules of certain coding.

SAP does not warrant the correctness and completeness of

the Code given herein, and SAP shall not be liable for

errors or damages caused by the usage of the Code, except

if such damages were caused by SAP intentionally or

grossly negligent.

Disclaimer

Some components of this product are based on Java™. Any

code change in these components may cause unpredictable

and severe malfunctions and is therefore expressively

prohibited, as is any decompilation of these components.

Any Java™ Source Code delivered with this product is only

to be used by SAP’s Support Services and may not be

modified or altered in any way.

Document History

Document Version Description

1.00 First official release of this guide

Typographic Conventions

Type Style Description

Example Text Words or characters quoted

from the screen. These

include field names, screen

titles, pushbuttons labels,

menu names, menu paths,

and menu options.

Cross-references to other

documentation

Example text Emphasized words or

phrases in body text, graphic

titles, and table titles

Example text File and directory names and

their paths, messages,

names of variables and

parameters, source text, and

names of installation,

upgrade and database tools.

Example text User entry texts. These are

words or characters that you

enter in the system exactly as

they appear in the

documentation.

<Example

text>

Variable user entry. Angle

brackets indicate that you

replace these words and

characters with appropriate

entries to make entries in the

system.

EXAMPLE TEXT Keys on the keyboard, for

example, F2 or ENTER.

Icons

Icon Description

 Caution

 Note or Important

 Example

 Recommendation or Tip

Table of Contents

1. Introduction ... 1

1.1 So The Gateway Server Outputs JSON Then? ... 1
1.2 Sample Code .. 1

1.3 Documentation Style .. 1

2. Business Scenario .. 1

3. Prerequisites ... 2

4. Step-by-Step Procedure ... 3

4.1 But Before We Start… .. 3
4.1.1 OK, So What’s That Got to Do With Gateway? ... 3

4.1.2 Configuring Apache to Act as a Proxy Server ... 4

4.1.3 Test That Proxy Redirection Works ... 4
4.2 Overview of Development Steps .. 5

4.3 Create a Basic Web page .. 5
4.4 Add the JavaScript Coding ... 6

4.5 Add the JavaScript Libraries .. 9

4.5.1 Dynamic Style Sheet Rules ... 10

4.5.2 Manage Creation of the XHR Connection ... 12
4.5.3 Convert the XML String to an OData Object.. 14

4.5.4 Transform the OData Object to HTML ... 19

5. Running the Application .. 23

5.1 Invoking the Service Document .. 23

5.2 Display the Service’s Metadata .. 26

5.3 Display a Collection .. 26
5.4 Extending the READ Functionality ... 27

6. Security Issues .. 28

How To Consume A Gateway Service In JavaScript

September 2011 1

1. Introduction

This document follows on from the two SDN How To Guides on using the OData Channel. These

documents can be found on SDN under the titles of:

 How To Write An OData Channel Service. Part 1 – The Model Provider Class

 How To Write An OData Channel Service. Part 2 – The Runtime Data Provider Class

Here, we will assume that you have created a Gateway service called FlightInformation and that

this will act as the service to be consumed. If however, you have not completed the How To Guides

mentioned above, then any Gateway Service can be used. In order for this to work, simply substitute

the name of your service at those points where the name FlightInformation is used.

1.1 So The Gateway Server Outputs JSON Then?

No, not yet: and its a popular misconception to think that before a JavaScript program can consume

an OData message, that message must first be presented in JSON format rather than XML format.

Allow me to explain…

The JavaScript Object Notation (JSON) format is a text based, human readable standard for data

interchange. The JSON format is nothing more than a plain text serialization of a JavaScript object;

consequently, a JavaScript program can assign a JSON string to one of its variables, and immediately

see the contents transformed back into JavaScript object format.

However, the ease with which a JavaScript program can consume JSON strings does not mean that

JavaScript needs JSON. It is certainly convenient, but is not a requirement. As you will see in section

4.6.3, when we need to parse the XML string returned from the Gateway server, we can get the

browser to do most of the heavy lifting for us.

I trust that by the time you have finished working through this how to guide, that you will understand

that JavaScript can readily consume an OData message in XML format rather than JSON format.

Admittedly, using JSON would be more convenient, but the fact that a Gateway server does not yet

output OData messages in JSON format is by no means a showstopper.

1.2 Sample Code

Due to some problems with pasting code copied from a PDF document into text editors, each code

fragment can be individually downloaded as a text file via a URL. The coding can then be copied from

the browser into your JavaScript editor without corruption of the space and carriage return characters.

1.3 Documentation Style

In this document, you will be shown various segments of HTML and JavaScript. However, rather than

simply providing you with working code to copy and paste, you will be guided through a step by step

analysis of the code in order to gain sufficient understanding to adapt this content to the needs of your

own business situation.

2. Business Scenario

You would like to develop a browser based front-end to consume the FlightInformation Gateway

service.

In this How To Guide, we will create a basic JavaScript based front-end for a Gateway service that

performs read only tasks. The CREATE and UPDATE operations are not covered in this document.

http://www.sdn.sap.com/irj/sdn/gateway?rid=/library/uuid/109c15ed-d8a3-2e10-7c9f-dcb1168aa1ff
http://www.sdn.sap.com/irj/sdn/gateway?rid=/library/uuid/50ad7227-68a9-2e10-b191-905cb9b6c31a

How To Consume A Gateway Service In JavaScript

September 2011 2

3. Prerequisites

This document assumes the following:

 You have access to an SAP NetWeaver 7.02 SP7 or higher system into which the SAP

NetWeaver Gateway 2.0 (SP1) ABAP add-ons have been installed.

 You have access to a fully functional Gateway service. In this document, we will use the

FlightInformation service.

 You have at least a basic understanding of JavaScript programming.

 You are using a modern browser capable of displaying the new features found in HTML5 and

CSS3 such as Chrome, Safari or FireFox.

 Although use of Internet Explorer is possible, for the purposes of this How To Guide, it is not

recommended for several reasons:

1. It is assumed you have browser debugging functionality with a console. In FireFox, this

is available via the add-in called FireBug; but in Chrome and Safari, this tool is built-in

(accessible via the “Inspect Element” right click menu option).

Various FireBug screen shots will be shown showing trace information.

IE has its own debug tool, but the screen layout is very different from FireBug’s.

2. This application should run correctly in IE, but the results seen on your screen may well

not match the results shown here in the screen shots. This is due to reduced support for

CSS3.

 You have Eclipse installed with the JavaScript Developer’s perspective available.

 Any locally installed web server will suffice from which to run this demo, as long as you know

how to configure it to act as a proxy server.

 Proxy configuration steps are given for the Apache web server only. If you have some other

web server locally installed, you will have to apply the corresponding configuration for your web

server.

 If you are not using the Apache web server, and you do not know how to configure your own

web server to act as a proxy server, then it is recommended that you install Apache.

 The installed Apache files are referred to by their Mac OS X path names. Windows users

should substitute the equivalent path name for their operating system.

http://httpd.apache.org/download.cgi

How To Consume A Gateway Service In JavaScript

September 2011 3

4. Step-by-Step Procedure

The development steps described in this document will show you how to build an HTML web page

containing JavaScript functionality that can consume an OData XML stream coming from an SAP

NetWeaver Gateway service.

4.1 But Before We Start…

Before we dive into the development, it is first necessary to understand that most modern browsers

have a built in security feature that prevents JavaScript based communication with servers other than

the one specified in the browser’s address line. This security feature implements a principle known as

the Same Origin policy and has been designed to prevent malicious coding within a web page from

performing what is known as a Cross Site Scripting (XSS) attack.

An XSS attack can happen as follows:

Alice is a regular user of the online store run on Bob’s website. She often purchases goods

from this website and identifies herself with a user id and password. Bob’s website maintains

a user profile for each user that includes payment details. Once logged in, Alice can access

all the details held in her user profile.

However, Mike notices a weakness in Bob’s website and constructs a web page that when

displayed, embeds genuine content from Bob’s online store, but does so from a page hosted

on Mike’s website.

Mike then sends Alice an email containing a URL to this rogue page. The email invites her to

take part in some special offer taking place in Bob’s online store. If Alice clicks on the link,

then she sees genuine content from Bob’s website, but her browser has actually visited the

malicious web page hosted on Mike’s web server.

If Alice now enters her user id and password, she will log on to Bob’s online store as expected,

but does so from within the context of Mike’s malicious web page. Unknown to Alice, her user

id and password will have been recorded by Mike’s rogue coding and surreptitiously stored on

his web server.

Mike can now impersonate Alice in Bob’s online store and consequently access her credit card

details.

The “Same Origin” policy is designed to prevent JavaScript based communication with any web server

other than the one with which you originally communicated, thus preventing an XSS attack.

4.2 But What’s That Got to Do With Gateway?

This tutorial could take two different approaches to handling the “Same Origin” policy: either, we could

host all the HTML and JavaScript files on the SAP NetWeaver Gateway server, or we could host those

files on the web server belonging to your local machine.

This tutorial will build the demo in such a way that you point your browser to http://localhost and not

the URL of your Gateway server.

However, the JavaScript coding within the locally hosted web page will want to communicate directly

with the SAP Gateway server. The browser will detect that the JavaScript coding is trying to

communicate with a server that is not http://localhost and will block the request because it appears to

be an XSS attack.

Your browser is unaware of the fact that your access to the SAP NetWeaver Gateway system is

perfectly legitimate, so to get around the problem, you need to configure your web server to act as a

proxy server for the Gateway system. This means that your JavaScript coding will be able to open a

special URL to http://localhost, but which the web server will then redirect to the SAP NetWeaver

Gateway server.

http://localhost/
http://localhost/
http://localhost/

How To Consume A Gateway Service In JavaScript

September 2011 4

If you should choose to host the HTML and JavaScript files on the same server as your SAP

NetWeaver Gateway server, then none of the following configuration steps for defining proxy entries

are required.

4.2.1 Configuring Apache to Act as a Proxy Server

If you are using a web server other than Apache, you will need to apply the corresponding

configuration to your web server. Proxy configuration for other web servers is not covered in this

document.

1. Open your Apache configuration file httpd.conf. This file is usually located in /etc/apache2.

2. Check that the module proxy_http_module is loaded. The following line should either be

added or uncommented:

LoadModule proxy_http_module libexec/apache2/mod_proxy_http.so

3. Add the following lines after the LoadModule section or download the configuration from here.

Reverse proxy setup
Without this configuration, JavaScript based access to Gateway systems will
not work correctly due to the "same origin" policy of XHR scripting
ProxyRequests Off

Gateway system ABC
ProxyPass /sap/Gateway/ABC/ http://mygateway.com:50000/sap/opu/sdata/sap/
ProxyPassReverse /sap/Gateway/ABC/ http://mygateway.com:50000/sap/opu/sdata/sap/

ProxyPass /sap/opu/sdata/sap/ http://mygateway.com:50000/sap/opu/sdata/sap/
ProxyPassReverse /sap/opu/sdata/sap/ http://mygateway.com:50000/sap/opu/sdata/sap/

<Proxy *>
Order deny,allow
Allow from all
</Proxy>

Here we have assumed that your SAP system has a system id of ABC. All occurrences of ABC

should be changed for whatever system id is appropriate in your situation.

We have further assumed that your Gateway server is called mygateway.com and is listening

for HTTP requests on port 50000. Again, change this for whatever value is appropriate in your

situation.

The first part of the above configuration creates a URL belonging to your local server called

/sap/Gateway/ABC. This URL acts as a proxy for the Gateway system’s real URL of

http://mygateway.com:50000/sap/opu/sdata/sap/.

The second part creates a second proxy URL of /sap/opu/sdata/sap/. This is necessary

because any relative URLs issued by the Gateway server will be relative to your own web

server and therefore must be forwarded to the Gateway server.

4. Save your changes.

5. Restart the Apache server.

4.2.2 Test That Proxy Redirection Works

Now that your web server has been configured to act as a proxy server for your SAP NetWeaver

Gateway server, open your browser and issue the following two URLs (adapted of course to your

specific values).

 http://mygateway.com:50000/sap/opu/sdata/sap/FlightInformation/

 http://localhost/sap/Gateway/ABC/FlightInformation/

The returned content should be identical.

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/Fragment1.conf

How To Consume A Gateway Service In JavaScript

September 2011 5

4.3 Overview of Development Steps

The aim of this demo is to show how JavaScript coding running within a web page can consume an

OData XML message. We will not therefore be particularly concerned with the details of visualisation

because that topic is entirely subjective.

In this demo, we will simply use a nested table approach to display the entities and collections found

within an OData message.

What will be covered is the following:

1. Using an XML HTTP Request (XHR) in JavaScript to invoke a service running on the SAP

NetWeaver Gateway server.

2. Using the browser’s built in DOM Parser to translate the plain text XML string into a DOM object.

3. Transform the DOM object into an OData object.
1

4. Traverse the OData object converting its contents to HTML for display. (You will need to adapt

this coding to suit the presentation requirements of your situation).

4.4 Create a Basic Web page

In your Eclipse workspace, create a new folder for this application and within it, create a new HTML

page called FlightData.html. Enter the following HTML or download it from here.

<!DOCTYPE html>
<html>
 <head>
 <title>SAP Gateway Example in JavaScript/HTML</title>
 <style type="text/css">@charset:ISO-8859-1;</style>
</head>
<body>
 <h1>SAP Gateway Example in JavaScript/HTML</h1>
 <form name="gatewayForm">
 <table>
 <tr><td>Offline mode</td>
 <td><input type="checkbox" name="offline"></td></tr>
 <tr><td>URI of SAP Gateway service : </td>
 <td><input type="text" size='80' name="url"
 value="/sap/Gateway/G3T/FlightInformation/Flights/"></td></tr>
 <tr><td>Client : </td>
 <td><input type="number" size='3' name='sapClient' value=100></td></tr>
 <tr><td>User : </td>
 <td><input type="text" size='12' name='sapUser'></td></tr>
 <tr><td>Password : </td>
 <td><input type="password" name='sapPassword'></td></tr>
 <tr><td>Language : </td>
 <td><input type="text" size='2' name='sapLanguage' value='EN'></td></tr>
 <tr><td><input type="button" name="callGateway"
 value="Invoke Gateway service" onclick="readGateway()"></td>
 <td></td></tr>
 </table>
</form>
<div class="response" id="HTML"></div>
</body>
</html> Save and activate class Z_CL_MODEL_PROVIDER.

The icon file used to indicate a pending Gateway request can be downloaded from here.

A standard Apache installation on a Mac has an alias for the /icons path
2
 which usually redirects to

/usr/share/httpd/icons. Please check whether such a redirect exists on your web server and then

place the icon file in the appropriate directory.

1
 Strictly speaking, this step is not needed, as it is possible to work directly with the DOM object. However, the DOM object

contains many nodes and attributes that are unrelated to OData. Therefore for ease of handling, it is transformed from the
browser’s DOM structure to the simpler OData structure.
2
 Check the httpd-autoindex.conf file to see if such a redirect exists on your machine.

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/Fragment2.html
http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/wait30trans.gif

How To Consume A Gateway Service In JavaScript

September 2011 6

4.5 Add the JavaScript Coding

The addition of the JavaScript coding is a task that must be fully completed before the web page will

become functional. Each unit of coding will be explained so that you can gain sufficient understanding

to adapt this solution to your own needs.

Inside the <head> tag, directly after the <style> tag, add the following coding. The following four

code fragments can be downloaded as a single block from here.

<script type="text/javascript">
// --
// Define a custom global object and then add the information for the XHR
// request header.
// --
 var globj = {};

 globj["reqHdr"] = {
 headers : { "X-Requested-With" : "XMLHttpRequest" },
 method : "GET",
 requestUri : function () { return document.gatewayForm.url.value; },
 queryStr : function () {
 return "sap-client=" + document.gatewayForm.sapClient.value +
 "&sap-user=" + document.gatewayForm.sapUser.value +
 "&sap-password=" + document.gatewayForm.sapPassword.value +
 "&sap-language=" + document.gatewayForm.sapLanguage.value;
 }
 };

The declaration of a custom global object. This ensures that the global values required by our

application are not muddled up with the other global values found in the JavaScript document object.

This also ensures that there will be no possible name clashes with existing attributes in JavaScript’s

own global object.

// --
// Utility functions to:
// Record a sync point
// Return the interval between sync points N and (N-1)
// Write message TXT to FireBug console for sync point N
// --
function syncPoint(n) { globj["syncPoint" + n] = new Date().getTime(); }
function syncInterval(n) { return globj["syncPoint" + n] - globj["syncPoint" + (n-1)]; }
function logSyncPoint(n,txt) { syncPoint(n); console.log(txt + syncInterval(n) + 'ms'); }

Three utility functions to record sync points and write messages to the FireBug console.

//--
// Return a formatted string of data size
//--
function formatLength(l) {
 var result = "";

 // What units? Bytes Kilobytes Megabytes Gigabytes
 var div = (l<1024) ? 1 : (l<1048576) ? 1024 : (l<1073741824) ? 1048576 : 1073741824;
 var units = (div==1) ? "bytes" : (div==1024) ? "Kb" : (div==1048576) ? "Mb" : "Gb";

 var m = l % div; // Remainder
 var i = (l - m) / div; // Integer part
 var f = Math.round((m / div) * 100); // Decimal part Ƶ to a precision of 2 decimal places

 return i + "." + f + units;
}

A utility function to convert an integer to a size in Kb, Mb or Gb (to two decimal places).

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/Fragment3.txt

How To Consume A Gateway Service In JavaScript

September 2011 7

The readGateway() function creates an XML HTTP Request (XHR) object then uses it to call the

Gateway server.

//--
// Direct read of the Gateway system using XHR interface
//--
function readGateway() {
 syncPoint(0);

 // If offline mode is selected, use static XML
 if (document.gatewayForm.offline.checked) {
 var xmlStr = {responseText: "<?xml version=\"1.0\" ... </atom:feed>"};
 processXML(xmlStr);
 }
 else {
 // Switch off display area, switch on wait icon
 document.getElementById("HTML").style.display = 'none';
 document.getElementById("Pending").style.display = 'block';

 // Create XHR object
 var xhr = new XHConn();

 // As long as we have a valid XHR object, use it to connect to the backend system
 if (xhr)
 xhr.connect(globj.reqHdr.requestUri(), // Who are we calling?
 globj.reqHdr.method, // How are we calling them?
 globj.reqHdr.queryStr(), // What values are we passing?
 processXML, // Call this function when the request completes
 true); // Is the call asynchronous?
 }
}

First a sync point is taken. This is the first of several sync points and from it, all other timings are

calculated.

Then we test to see if the user has checked the “Offline Mode” checkbox. If they have, then a hard

coded OData message is used instead of attempting to call the Gateway server. Then the

processXML() function is called directly.

If he user does not select the “Offline Mode” checkbox, then the display area is switched off and the

wait icon is switched on. Next, an XHR object is created.
3

As long as the XHR object creation was successful, we call its connect() method. One of the

parameters to this method is the name of the function that should be called when the XHR request

completes. In this case, this function is called processXML.

The processXML() function is called asynchronously at such time as the XHR request is complete.

The exact point in time at which processXML()is called is controlled by the value of the “ready state”

flag within the XHR request. This is checked every time the XHR’s onreadystatechange event is

triggered.

As soon as the ready state flag equals 4 (meaning that the XHR request is complete), the call back

function processXML is invoked.

3
 The coding for the XHConn object lives in a different JavaScript file.

How To Consume A Gateway Service In JavaScript

September 2011 8

//--
// Call back function used to convert the XML response from the Gateway server
// first into a DOM object, and then it is reduced to an OData object.
//
// This function will be called when the XHR request raises the onReadyState
// event with readState == 4 (I.E. request completed)
//--
function processXML(data) {
 logSyncPoint(1,'Gateway server responded after ');

 // How much data did we receive back from the server?
 console.log("Received " + formatLength(data.responseText.length) + " from Gateway server");

 // Transform the XML string into an OData object
 globj.oDataObj = XML2ODataObj(data);

 // Did the transformation work?
 if (globj.oDataObj !== {}) {
 // Display the data
 // If a very large amount of data is returned from the Gateway server,
 // then timing information produced by measuring the timing intervals
 // between sync points becomes inaccurate. This is because JavaScript
 // processing is interrupted when the browser creates and then paints
 // a very large render tree
 var oDataAsHtml = showODataObj();
 document.getElementById("HTML").innerHTML = oDataAsHtml;

 // How much HTML was generated?
 console.log("Generated HTML size = " + formatLength(oDataAsHtml.length));

 // Switch output area on and wait icon off
 document.getElementById("HTML").style.display = 'block';
 document.getElementById("Pending").style.display = 'none';

 logSyncPoint(4,'HTML rendered in ');
 }
}
</script >

First, we call the logSyncPoint() function to indicate that sync point 1 has been reached and to

output a message to the FireBug console. The size of data received from the Gateway server is also

written to the console.

Next, the XML string received from the Gateway server is converted to an OData object by calling the

XML2ODataObj() function. This is a two-stage process that will be described in more detail later on in

this document.

As long as the transformation of the XML string was successful, the OData object is then transformed

to HTML by calling the showODataObj() function.

Finally, the display area is switched on, the wait icon is switched off and the final sync point is

reached.

How To Consume A Gateway Service In JavaScript

September 2011 9

4.6 Add the JavaScript Libraries

The above coding is still not yet functional; we need to make reference to four different JavaScript

libraries to do the following:

 Dynamically apply style sheet rules,
4

 Manage the creation of the XHR connection,

 Convert the XML string received from Gateway into an OData JavaScript object,

 Transform the OData JavaScript object into HTML.

The coding to reference these libraries must first be added to your web page immediately after the first

</script> tag that closes the preceding JavaScript code section, but before the </head> tag. This

HTML fragment can be downloaded from here.

<script type="text/javascript" src="./FlightData.css.js"></script>
<script type="text/javascript" src="./xhr_connection.js"></script>
<script type="text/javascript" src="./XML2OData.js"></script>
<script type="text/javascript" src="./OData2HTML.js"></script>

Save the file FlightData.html.

In the following sections, you are provided with links from which you can download the files referenced

in the above HTML fragment. Save these files in the same directory as your FlightData.html web

page.

The following sections describe the contents of each of these JavaScript libraries.

4
 The use of JavaScript to create style sheet rules is simply a development preference of mine. I dislike static style sheets

simply because they do not allow you to build CSS rules with variable values. Therefore, in order to make global changes to a
style sheet, I use JavaScript to create the rules and hold any values that might need to change in variables.
This approach requires a bit more coding effort, but the result is far more flexible.

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/Fragment4.txt

How To Consume A Gateway Service In JavaScript

September 2011 10

4.6.1 Dynamic Style Sheet Rules

The CSS rules defined by the following JavaScript coding could be specified in a static .css file;

however, in order to have greater flexibility, I prefer to define style rules dynamically.

The JavaScript file FlightData.css.js can be downloaded from here.

// ---
// There must be at least one hard-coded style element already present in the DOM
// in order for the following assignment to $ss to work
// ---
 if (!$ss)
 var $ss = document.styleSheets[0];

 // If $ss still doesn't exist, then the required <style> element is missing
 if (!$ss)
 alert("Required <style> element is missing from the DOM.\n\n" +
 "Please insert <style type=\"text/css\">@charset:ISO-8859-1;</style> " +
 "as the first element inside <head> in the HTML file,\n" +
 "otherwise none of the OData information will be formatted correctly.");

 // Does this browser respond to addRule() or insertRule()?
 if (!$ss.addRule)
 $ss.addRule = function () {
 document.styleSheets[0].insertRule(arguments[0] + "{" + arguments[1] + "}",0);
 };

//---
// What browser is being used?
//---
 var ua = navigator.userAgent;
 var an = navigator.appName;
 var vn = navigator.vendor;

 var isiPhone = !!(ua.indexOf("iPhone") > -1);
 var isiPad = !!(ua.indexOf("iPad") > -1);

 var ieIndex = ua.indexOf("MSIE");
 var isIE = f alse ;

 if (ieIndex > -1 && (an.indexOf("Microsoft") > -1)) {
 isIE = true ;
 var ieVersion = parseInt(ua.substring(ieIndex+5, ua.indexOf(";", ieIndex)));
 }

 var isFF = !!((ua.indexOf("Firefox") > -1) && (an.indexOf("Netscape") > -1));
 var isS = !!((ua.indexOf("Safari") > -1) && (vn.indexOf("Apple") > -1));
 var isGC = !!((ua.indexOf("Chrome") > -1) && (vn.indexOf("Google") > -1));
 var isO = !!((ua.indexOf("Opera") > -1) && (an.indexOf("Opera") > -1));
 var isK = !!((ua.indexOf("Konqueror") > -1) && (an.indexOf("Konqueror") > -1));

//---
// Returns the vendor specific CSS3 prefix needed for certain CSS properties
//---
function vendorPref() {
 return isIE ? "-ms-"
 : isFF ? "-moz-"
 : (isS || isGC) ? "-webkit-"
 : isO ? "-o-"
 : isK ? "-khtml-"
 : "";
 };

// --
// Style sheet variables
// --
 var tableBorderRadius = "0.8em";
 var cellBorderRadius = "0.3em";
 var responseBorderRadius = "1.75em";
 var responseFont = "Courier New";
 var responseFontSize = "12pt";
 var responseFontFamily = responseFont + ", Helvetica, sans-serif";

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/FlightData.css.js

How To Consume A Gateway Service In JavaScript

September 2011 11

 var responseLineHeight = "1em";

 var boxGrey8812 = "#888 8px 8px 12px";

// --
// Add style sheet rules
// --
 $ss.addRule("div#HTML.response","display:block" +
 ";color:#444" +
 ";font-family:" + responseFontFamily +
 ";font-size:" + responseFontSize +
 ";line-height:" + responseLineHeight +
 ";background-color:#FFE");

 $ss.addRule("#Pending","display:none");

// --
// Table DIVs for Object
// --
 $ss.addRule("div.objTable","display:table" +
 ";border:1pt #222 solid" +
 ";" + vendorPref() + "border-radius:" + tableBorderRadius +
 ";margin:0.25em" +
 ";padding:0.55em" +
 ";background:#EEE");

 $ss.addRule("div.objRow","display:table-row" +
 ";margin:0.15em");

 $ss.addRule("div.objRow:nth-child(odd)", "background-color:#E8E8E8");
 $ss.addRule("div.objRow:nth-child(even)","background-color:#F0F0F0");

 $ss.addRule("div.objCell","display:table-cell" +
 ";border:0pt none" +
 ";" + vendorPref() + "border-radius:" + cellBorderRadius +
 ";padding:0.25em");

// --
// Table DIVs for Array
// --
 $ss.addRule("div.arrayTable","display:table" +
 ";border:1pt #222 solid" +
 ";" + vendorPref() + "border-radius:" + tableBorderRadius +
 ";margin:0.25em" +
 ";padding:0.5em" +
 ";background:#EEE");

 $ss.addRule("div.arrayRow","display:table-row" +
 ";margin:0.15em");

 $ss.addRule("div.arrayRow:nth-child(odd)", "background-color:#CCC");
 $ss.addRule("div.arrayRow:nth-child(even)","background-color:#DDD");

 $ss.addRule("div.arrayHdr","display:table-cell" +
 ";padding:0.15em;" +
 ";font-weight:bold" +
 ";text-align:center" +
 ";background:#D8D8D8");

 $ss.addRule("div.arrayCell","display:table-cell" +
 ";border:0pt none" +
 ";" + vendorPref() + "border-radius:" + cellBorderRadius +
 ";padding:0.25em");

How To Consume A Gateway Service In JavaScript

September 2011 12

4.6.2 Manage Creation of the XHR Connection

This function must perform three main tasks:

1. Create an XML HTTP Request object using whatever means are provided by the browser

2. Implement a connect() method for the XHR object

3. Within the connect() method, implement an onreadystatechange event handler.

The JavaScript file xhr_connection.js can be downloaded from here.

//--
// Browser independent creation of an XHR object
//--
function XHConn() {
 var xmlhttp;

 // Try to create an XHR object using first the methods that are most
 // browser specific
 try { xmlhttp = new ActiveXObject("Msxml2.XMLHTTP"); }
 cat ch(e) { try { xmlhttp = new ActiveXObject("Microsoft.XMLHTTP"); }
 catch (e) { try { xmlhttp = new XMLHttpRequest(); }
 catch (e) { xmlhttp = false ; } } }

 // Did that work?
 if (!xmlhttp) {
 // Nope, throw toys out pram and give up
 alert("ERROR: Your browser does not support the use of XML HTTP requests.");
 return null ;
 }
 else {
 // Yup, so define what happens in the connect method
 this .connect = function (sURL, sMethod, sVars, fnDone, bAsynch) {
 var returnVal = false ;

 // --
 // Handle the onreadystatechange event
 xmlhttp.onreadystatechange = function () {
 console.log("Ready State changed to " + xmlhttp.readyState +
 " with status " + xmlhttp.status);

 // Invoke call back function when the request has finished.
 // Note that even if the request is not successful, we still want to
 // parse the response to find the error message
 if (xmlhttp.readyState == 4)
 fnDone(xmlhttp);
 };
 // --

 // Make sure the XHR object still exists
 if (xmlhttp) {
 sMethod = sMethod.toUpperCase();

 // The asynch argument is optional
 // If absent, then asynchronous behaviour is the default
 if (bAsynch == null) bAsynch = true ;

 try {
 // If its a GET request, append parameters to the query string
 if (sMethod == "GET") {
 xmlhttp.open(sMethod, sURL+"?"+sVars, bAsynch);
 sVars = "";
 }
 // Non-GET requests are handled as POST requests
 else {
 xmlhttp.open(sMethod, sURL, (bAsynch == true));
 xmlhttp.setRequestHeader("Method", "POST "+sURL+" HTTP/1.1");
 xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 }

 // Send the XHR request passing the parameters
 // The sVars variable will be empty for GET requests because the values

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/xhr_connection.js

How To Consume A Gateway Service In JavaScript

September 2011 13

 // will already have been appended to the query string.
 xmlhttp.send(sVars);
 returnVal = true ;
 }
 catch (z) {
 // OK, something went horribly wrong
 alert(z);
 returnVal = false ;
 }
 }

 return returnVal;
 };
 };

 return this ;
}

How To Consume A Gateway Service In JavaScript

September 2011 14

4.6.3 Convert the XML String to an OData Object

This set of functions converts the XML string into a JavaScript object containing only those nodes and

attributes relevant for OData.

The JavaScript file XML2OData.js can be downloaded from here.

//--
// XML node values
//--
var ELEMENT_NODE = 1;
var ATTRIBUTE_NODE = 2;
var TEXT_NODE = 3;
var CDATA_SECTION_NODE = 4;
var ENTITY_REFERENCE_NODE = 5;
var ENTITY_NODE = 6;
var PROCESSING_INSTRUCTION_NODE = 7;
var COMMENT_NODE = 8;
var DOCUMENT_NODE = 9;
var DOCUMENT_TYPE_NODE = 10;
var DOCUMENT_FRAGMENT_NODE = 11;
var NOTATION_NODE = 12;

These declarations exist simply to give developer-friendly names to the hardcoded values used to

identify different types of node in an XML document.

//--
// Transform an XML string into an OData object
//--
function XML2ODataObj(XMLstr) {
 var obj = {};

 if (XMLstr.responseText != null) {
 try {
 // Use the browser's DOM Parser to do the heavy lifting
 var dom = (new DOMParser()).parseFromString(XMLstr.responseText, "text/xml");
 logSyncPoint(2,'DOM parser parsed XML in ');

 // Do we have a document node at the top level?
 if (dom.nodeType == DOCUMENT_NODE) {
 // Yup, so transform the DOM object into an OData object
 obj = buildODataObj(dom.documentElement);
 logSyncPoint(3,'OData object built in ');
 }
 }
 catch (e) {
 // SomeÔÈÉÎÇƦÓ ÇÏÎÅ ÈÏÒÒÉÂÌÙ ×ÒÏÎÇƚƚƚ
 alert(e);
 }
 }

 return obj;
}

The function XML2ODataObj() is where the XML text string received from the Gateway server is

converted to a JavaScript document object model (DOM) object.

Most modern browsers provide a JavaScript API to access their built-in parser. This is known as the

DOM Parser (highlighted in yellow above) and is where the browser does the heavy lifting for us. This

function returns an object that contains all the nodes and attributes required by the browser’s DOM

and does so in a fraction of the time the equivalent JavaScript coding would require.

Strictly speaking, we could now start working with the DOM object and translate its contents directly to

HTML for visualisation. However, this approach would result in a poorer architecture because the

function that translates an OData object into HTML would additionally need to filter out those object

nodes that are not relevant to OData. This in turn would blur the boundaries of the task performed by

the visualisation function and should therefore be avoided.

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/XML2OData.js

How To Consume A Gateway Service In JavaScript

September 2011 15

The DOM object is converted to an OData object by function buildODataObj().

//--
// Recursively transform the DOM object into an OData object
//--
function buildODataObj(xml) {
 var o = {};

 switch (xml.nodeType) {
 case ELEMENT_NODE:
 // Create an array element for each attribute
 // This loop might execute zero times
 for (var i=0; i<xml.attributes.length; i++) {
 var attrName = xml.attributes[i].nodeName;
 var attrValue = xml.attributes[i].nodeValue.toString();

 switch (attrName) {
 case "xml:base":
 globj.baseURI = attrValue;
 break ;
 case "href":
 attrValue = globj.baseURI + attrValue;
 break ;
 default :;
 }

 // Add attribute name and value
 o["@"+attrName] = attrValue;
 }

 // Does the element have child nodes?
 if (xml.childNodes.length > 0) {
 var textChild=0, cdataChild=0, hasElementChild=false ;

 // Count the types of child node (if any) below the current node
 for (var n=xml.firstChild; n; n=n.nextSibling) {
 switch (n.nodeType) {
 case ELEMENT_NODE:
 hasElementChild = true ;
 break ;
 case TEXT_NODE:
 if (n.nodeValue.match(/[^ \f\n\r\t\v]/))
 textChild++;
 break ;
 case CDATA_SECTION_NODE:
 cdataChild++;
 default :;
 }
 }

 // Did we find any child nodes?
 if (hasElementChild) {
 // If there's only one text or CDATA node
 if (textChild < 2 && cdataChild < 2) {
 // Get rid of any elements containing only white space
 removeWhite(xml);

 // Should go around this loop only once
 for (var n=xml.firstChild; n; n=n.nextSibling) {
 switch (n.nodeType) {
 case TEXT_NODE:
 o["#text"] = escape(n.nodeValue);
 break ;
 case CDATA_SECTION_NODE:
 o["#cdata"] = escape(n.nodeValue);
 break ;
 default :
 // Does this element already exist in our array?
 if (o[n.nodeName]) {
 // Yup, so the same element occurs multiple times
 if (o[n.nodeName] instanceof Array)
 // Append node element to existing array
 o[n.nodeName][o[n.nodeName].length] = buildODataObj(n);

How To Consume A Gateway Service In JavaScript

September 2011 16

 else
 // Create new element array
 o[n.nodeName] = [o[n.nodeName], buildODataObj(n)];
 }
 else
 // Nope, haven't seen this element before
 o[n.nodeName] = buildODataObj(n);
 }
 }
 }
 else {
 // Mixed content
 if (!xml.attributes.length)
 o = escape(innerXml(xml));
 else
 o["#text"] = escape(innerXml(xml));
 }
 }
 else {
 // No child elements, so see if it's just text
 if (textChild) {
 if (!xml.attributes.length)
 o = escape(innerXml(xml));
 else
 o["#text"] = escape(innerXml(xml));
 }
 else {
 // All we're left with is a CDATA section
 if (cdataChild) {
 if (cdataChild > 1)
 o = escape(innerXml(xml));
 else
 for (var n=xml.firstChild; n; n=n.nextSibling)
 o["#cdata"] = escape(n.nodeValue);
 }
 }
 }

 // If we come out of the above processing with no attributes and no children
 // then forget this element tree
 if (!xml.attributes.length && !xml.firstChild)
 o = null ;
 }

 break ;
 case DOCUMENT_NODE:
 o = buildODataObj(xml.documentElement);
 break ;
 default :
 alert("This parser cannot handle nodes of type " + xml.nodeType);
 }

 return o;
}

How To Consume A Gateway Service In JavaScript

September 2011 17

The following three functions handle various situations that could be encountered when traversing the

DOM object. For instance, if an innerHTML element is located, its contents should be converted to

XML notation.

//--
// Handle inner XML
//--
function innerXml(node) {
 var s = "";

 if ("innerHTML" in node) s = node.innerHTML;
 else {
 var asXml = function (n) {
 var s = "";

 if (n.nodeType == ELEMENT_NODE) {
 s += "<" + n.nodeName;

 for (var i=0; i<n.attributes.length;i++)
 s += " " + n.attributes[i].nodeName + "=\"" + n.attributes[i].nodeValue.toString() + "\"";

 if (n.firstChild) {
 s += ">";

 for (var c=n.firstChild; c; c=c.nextSibling)
 s += asXml(c);

 s += "</"+n.nodeName+">";
 }
 else s += "/>";
 }
 else
 if (n.nodeType == TEXT_NODE)
 s += n.nodeValue;
 else
 if (n.nodeType == CDATA_SECTION_NODE)
 s += "<![CDATA[" + n.nodeValue + "]]>";

 return s;
 };

 for (var c=node.firstChild; c; c=c.nextSibling)
 s += asXml(c);
 }

 return s;
}

There is also a function to escape any special characters:

//--
// Escape character string
//--
function escape(txt) {
 return txt.replace(/[\\]/g, "\\\\").
 replace(/[\"]/g, '\\"').
 replace(/[\n]/g, '\\n').
 replace(/[\r]/g, '\\r');
}

How To Consume A Gateway Service In JavaScript

September 2011 18

And a function to remove node elements that contain only white space:

//--
// Recursively remove elements containing only white space
//--
function removeWhite(e) {
 e.normalize();

 for (var n = e.firstChild; n;) {
 switch (n.nodeType) {
 case TEXT_NODE:
 // Do we have pure whitespace in this text node?
 if (!n.nodeValue.match(/[^ \f\n\r\t\v]/)) {
 var nxt = n.nextSibling;
 e.removeChild(n);
 n = nxt;
 }
 else
 n = n.nextSibling;
 break ;

 case ELEMENT_NODE:
 // Remove whitespace in element node and drop through
 // to the default action of getting the next sibling
 removeWhite(n);

 default :
 n = n.nextSibling;
 }
 }

 return e;
}

How To Consume A Gateway Service In JavaScript

September 2011 19

4.6.4 Transform the OData Object to HTML

This final task is to visualise the OData object. This is done by recursively traversing the object

hierarchy and transforming each node or array into the corresponding HTML.

The JavaScript file OData2HTML.js can be downloaded from here.

This function is where the bulk of the effort will be required when adapting this solution to your

particular visualisation needs.

Using our global object, store some frequently used values.

// Check for existence of the global object
 if (!globj)
 var globj = {};

// Define some frequently used values
 globj["oDataObj"] = {};

 // Define various strings for HTML creation
 globj["objTableDiv"] = "<div class='objTable'>";
 globj["objRowDiv"] = "<div class='objRow'>";
 globj["objCellDiv"] = "<div class='objCell'>";
 globj["arrayTableDiv"] = "<div class='arrayTable'>";
 globj["arrayRowDiv"] = "<div class='arrayRow'>";
 globj["arrayCellDiv"] = "<div class='arrayCell'>";
 globj["arrayHdrDiv"] = "<div class='arrayHdr'>";
 globj["endDiv"] = "</div>";

 // Remember the Base URI for this OData document
 globj["baseURI"] = "null";

By defining our own typeOf() function, we can ensure that we get back the correct answer when

checking objects of type null or Array.

If left to its own devices, the JavaScript typeof operator will return 'object' when passed an Array.

This is not altogether wrong, since an Array is a type of object. Also, the typeof operator is pretty

basic, so it is somewhat unreasonable to expect it to perform a two-step identification of its parameter.

It can say, “I’ve been passed an object”, but it cannot then take the next step and determine what type

of object it is. That’s one step too far.

On the other hand, the typeof operator will return 'object' when passed null . Sorry, but that’s just

totally wrong since the data type null is one of the JavaScript primitives…

// --
// Use our own typeOf() function in order to get the correct answer when
// handling Arrays or null
// --
function typeOf(value) {
 var s = typeof value;

 return (s === 'object') ? (!value) ? 'null' : (value instanceof Array) ? 'array' : s : s;
}

The showAsLink() function is used to display all elements that contain only plain text. If the plain text

represents a URL, then this is wrapped in the HTML anchor tag; otherwise the parameter value is

returned unmodified.

// --
// Return a hypertext link if the string is a valid URL
// --
function showAsLink(val) {
 return (val.indexOf("http://") > -1 || val.indexOf("https://") > -1)
 ? "Link"
 : val;
}

http://whealy.com/sap/Gateway/OData%20Consumption%20in%20JavaScript/OData2HTML.js

How To Consume A Gateway Service In JavaScript

September 2011 20

The showODataObj() function is a validation wrapper for the OData parser. This exists simply to

ensure that the OData parser is never passed a null object.

//--
// Show the OData object as nested DIVs and tables
//--
function showODataObj() {
 return (globj.oDataObj) ? parseObject(globj.oDataObj)
 : "ERROR: Global OData object cannot be found!";
}

The parseObject() function is the starting point for the visualisation process of the OData object.

This function and the following function parseArray() will need to be modified in order to produce

your required visualisation.

However in this demo, we will not attempt to win any design awards; we will simply traverse the object

hierarchy translating nodes and arrays into tables.

This function is quite simple in that it creates a table for each object, then loops around all the

elements in the current object creating a new row for each element. Then, depending on the property

type it encounters, recursively calls either itself or parseArray().

//--
// Serialize an object hierarchy
//--
function parseObject(obj) {
 // Start a new table
 var response = globj.objTableDiv;

 for (var prop in obj) {
 // Start a new row, put the property name in column 1 then start column 2
 response += globj.objRowDiv + globj.objCellDiv + prop + globj.endDiv + globj.objCellDiv;

 // Using our own typeOf() function, decide what to do next
 swi tch (typeOf(obj[prop])) {
 // Traverse into the object or array
 case 'object': response += parseObject(obj[prop]); break ;
 case 'array': response += parseArray(obj[prop]); break ;

 // If the property is neither an object nor an array, then
 // treat it as plain text.
 default : response += showAsLink(obj[prop]);
 }

 // End both the last column and row
 response += globj.endDiv + globj.endDiv;
 }

 // End table
 response += globj.endDiv;

 return response;
}

How To Consume A Gateway Service In JavaScript

September 2011 21

The parseArray() function will first create a table, and then display the array such that each array

attribute is a column and each array element a row.

And now fun starts…

In order to convert the array to a table, look-ahead parsing must be performed (and this requires two

passes through the array).

Each element in the array can have its own set of attributes. There is no guarantee that these

attributes are used by any other elements in the array. Therefore, a super set of all the attributes in all

the array elements must created. Then, when we perform the second pass through the array, we

populate only those columns of the table that are used by the current array element.

Ultimately, we will end up traversing to the bottom of each branch of the hierarchy, at which point the

data will be displayed through function showAsLink().

// --
// Serialize an Array to a table
// --
function parseArray(arr) {
 // Start a new table
 var response = globj.arrayTableDiv;

 // Create title row and start next row
 response += globj.arrayRowDiv + globj.arrayCellDiv +
 "Array[" + arr.length + "]" + globj.endDiv + globj.endDiv;
 response += globj.arrayRowDiv;

 // As long as this array contains something...
 if (arr.length > 0) {
 // Not all array elements contain the same set of attributes, so we must
 // first scan all array elements to establish an attribute super set.
 // This then tells us how many columns need to be created. The temporary
 // super set object is then used as the reference from which the column
 // headings are generated.
 var tempAttrs = {};

 // Create a super set of attributes used by all elements in this array
 for (var i=0; i<arr.length; i++)
 for (var colName in arr[i])
 if (!tempAttrs[colName])
 tempAttrs[colName] = colName;

 // Each array element occupies a column within which is a nested table
 response += globj.arrayCellDiv + globj.arrayTableDiv;

 // --
 // Start heading row
 response += globj.arrayRowDiv;

 // Write out all column headings from list of attributes
 for (var colHdr in tempAttrs) {
 response += globj.arrayHdrDiv + colHdr + globj.endDiv;
 }

 // End heading row
 response += globj.endDiv;
 // --

 // Output array values as columns
 for (i = 0; i < arr.length; i++) {
 var thisArrayEl = arr[i];
 var colName = null ;

 // Start new data row
 response += globj.arrayRowDiv;

 // Output each array element as a column of the table using the super set
 // of all attributes as the reference
 for (colName in tempAttrs) {
 // Start data cell

How To Consume A Gateway Service In JavaScript

September 2011 22

 response += globj.arrayCellDiv;

 // Does the current super set attribute exist in the current array
 // element?
 if (thisArrayEl[colName]) {
 // Yup, so output its value, bearing in mind that this could be a
 // nested object or array
 var thisColValue = thisArrayEl[colName];
 var thisColValueType = typeOf(thisColValue);

 // What flavour is the current element attribute?
 switch (thisColValueType) {
 case 'object': response += parseObject(thisColValue); break ;
 case 'array': response += parseArray(thisColValue); break ;
 default : response += showAsLink(thisColValue);
 }
 }
 else
 // Nope, the current attribute of the super set is not used by the
 // current array element, so output a non-breaking space instead.
 response += " ";

 // End data cell
 response += globj.endDiv;
 }

 // End data row
 response += globj.endDiv;
 }

 // End array table and containing cell
 response += globj.endDiv + globj.endDiv;
 }
 else
 // Show that this array is empty, then end row and containing cell
 response += globj.arrayCellDiv + "Empty array" +
 globj.endDiv + globj.endDiv;

 // End row and end table
 response += globj.endDiv + globj.endDiv;

 return response;
}

How To Consume A Gateway Service In JavaScript

September 2011 23

5. Running the Application

Once you have assembled all the pieces of the web page, publish the HTML file and its related

JavaScript files to your local web server.

5.1 Invoking the Service Document

1. Start your browser.

2. Switch on FireBug or choose “Inspect Element” from the right click context menu.

3. Point your browser to FlightData.html on your local web server.

4. Select the FireBug Console tab.

5. Enter the correct proxy URI for your Gateway server.

In my case, I am running the FlightInformation service on a system called G3T.

6. Enter the client, user id and password.

7. Press the “Invoke Gateway Service” button.

How To Consume A Gateway Service In JavaScript

September 2011 24

8. If you make a mistake with any of these values, you will see an authentication pop-up because

the first attempt to log on failed.

Enter your user id and password and press OK.

In the console log, you will also see an “HTTP 401 Unauthorised” error if the logon process

fails.

9. Once you have logged on, the Gateway service is executed and the OData XML will be

returned to your browser.

10. In this case, we issued the URI to retrieve the Service Document the Gateway service

FlightInformation. As a result, we are passed back a list of collections within this service.

As an aside, remove the last slash character from the Gateway URI and invoke the service again.

Notice in the FireBug console, you now see an “HTTP 307 Temporary Redirect” followed by the

normal execution of the Gateway service.

To avoid unnecessary round trips, always ensure that the URI to a Service Document is terminated

with a forward slash character.

How To Consume A Gateway Service In JavaScript

September 2011 25

11. In the FireBug console, you will see the timing information recorded by calls to the

logSyncPoint() function.

12. The Array[3] section shows that this Gateway Service contains 3 collections with the titles

BookingCollection, AirportCollection and FlightCollection. However, be careful!

These titles are just text descriptions; they are not the names of the actual collections.

13. As you will recall from the development of the FlightInformation Model Provider class, the

collection names are Bookings, Airports and Flights.

These names can be seen appended to the Base URI for this Service Document. Hold your

mouse pointer over one of the Link hypertext links, and in the browser’s status line you will

see the full URI for that collection.

How To Consume A Gateway Service In JavaScript

September 2011 26

5.2 Display the Service’s Metadata

If you wish to display the metadata belonging to a Gateway service, then simply add the $metadata

command to the end of the Service Document URI.

E.G. /sap/Gateway/G3T/FlightInformation/$metadata

Unfortunately, running this command produces a formatted display that very wide and therefore a

useful screen shot cannot be provided in this document.

5.3 Display a Collection

There are several points to remember here when displaying a collection.
5
 In the URI:

 No terminating forward slash character is required after the collection name

 The collection name is case sensitive

 The Gateway Service name is not case sensitive

To display a collection belonging to a Gateway Service:

1. Add the collection name to the URI in the form field and press the “Invoke Gateway Service”

button again. For instance Flights.

2. You will now see the contents of the Flights collection rendered as nested tables.

3. As you can see, the displayed information is wider than can be displayed easily here; hence

the text in the screen shot is quite small.

5
 Remember that the terms “collection” and “entity set” can be used interchangeably.

How To Consume A Gateway Service In JavaScript

September 2011 27

5.4 Extending the READ Functionality

You can enter any valid OData URI
6
 in the form field and see the result visualised by this JavaScript

page. For instance, if you wish to see the details of Rome’s Fiumicino airport, you could enter

/sap/Gateway/G3T/FlightInformation/Airports(IATACode='FCO')

Which would return:

Similarly, if you want to see a list of Airports from which you can fly directly to San Francisco, then you

can enter:

/sap/Gateway/G3T/FlightInformation/Airports(IATACode='SFO')/AirportsTo

in the form field.

6
 That is, any valid OData URI performs read only functionality.

How To Consume A Gateway Service In JavaScript

September 2011 28

6. Security Issues

The coding shown here is designed only to show how a connection to a Gateway server can be

established from JavaScript and how the returned OData XML document can be consumed.

Without the addition of security considerations, this coding is not suitable for implementation in a live

scenario.

At the moment, the XHR connection uses the plain text HTTP protocol to communicate with the

Gateway server. This means that all parameters are transmitted over the network in plain text: this

includes user id and password. Therefore, the most important change is to switch to the use of

HTTPS instead of HTTP.

Once you are using HTTPS, all network traffic is encrypted irrespective of the method being used

(GET, PUT, POST etc.)

www.sdn.sap.com/irj/sdn/howtoguides

