Hands-on Tutorial: Building a Simple SAP HANA Smart Data Streaming Project

Document version 4.0
May 2015
SAP HANA Smart Data Streaming SPS09
Prerequisites:
- Install SAP HANA SPS09 and SAP HANA Studio
- Basic working knowledge of SAP HANA and SAP HANA Studio
- Install the HANA smart data streaming optional component
- Extract the contents of the "towermonTutorial" zip file on your streaming host at the following shared directory location:
 - The directory location on your streaming host should be: `/hana/data_streaming/<SID>/adapters/<WorkspaceName>/towermon3/streaming_data_files/`. The streaming_data_files contains the data for this tutorial
 - The location `/hana/data_streaming/<SID>/adapters/<WorkspaceName>/` portion of that directory path is one of the Sandbox directory locations permitted by the default Sandbox Streaming policy
 - Remember to replace `<SID>` with the system ID of your HANA system
 - You can use the value "default" for the `<WorkspaceName>` as this is the workspace that streaming projects are deployed to by default. While the Sandbox Streaming policy does allow additional directory locations to be used, for the purposes of this tutorial we recommend the path specified above.
- Extract the contents of the "towermonTutorial" zip file on your local windows machine (where your HANA studio is installed on)
 - Extract on your local windows machine at the following directory location: `C:\streamingdemos\towermon3\windows_files`. The content in the windows_files will be used later in this tutorial.

Launch HANA Studio

1. Open SAP HANA Studio – double-click on the SAP HANA Studio icon on the desktop to launch.
Connect to your HANA Master Node from HANA Studio

2. If HANA Studio asks you to choose a workspace, create a new one called “Streaming.” When it opens to the Welcome screen, go to the workbench. This will take you to SAP HANA Administration Console perspective.

3. Connect to your HANA Host:
 - In the SAP HANA Administration Console perspective, right-click anywhere on the Systems panel and select Add System.
 - Specify the Host Name and Instance Number of your HANA host, click Next.
 - In this example we are connecting to a virtual machine where our HANA system is installed.
On the next screen choose the Authentication by database user and enter the username and password. Check off connect using SSL and Enable SAP start service connection. For this tutorial use the SYSTEM user credentials.

Click finish and you will see the system you added in the Systems tab. The green box beside the system name will indicate that the HANA server is running.
Connect to the Streaming Server from HANA Studio

4. Open Server View
 - In the Window Menu choose Show View>Other..

 - Under SAP HANA smart data streaming choose Server View
 - You will now see a tab at the bottom of the screen (most likely) that shows esp://localhost:9786

Add your streaming server URL and connect to the Streaming server
 - Right-click anywhere in the Server View panel and select New Server URL
 - If you are unable to right click in the Server View panel, click the New Server URL button to the right of the Server View tab heading
Hands-on Tutorial: Building a Simple SAP HANA Smart Data Streaming Project

- Under Host Name type in the fully qualified domain name of your streaming host
- For the port specify 3XX26 where XX = the Instance # of your HANA system. For example if the Instance # is 00, then the port # will be 30026.
- Check the SSL box
- After clicking OK your newly added server URL will appear in the server view. Right-click on it and choose Connect Server

- In the Set Credentials dialogue window you can supply the desired credentials (for the purposes of this demo we will log-on as the HANA SYSTEM user. Check off the “Use Secure Storage for Streaming Credentials” Check-box

Note: you can always add more users via the HANA Administration console

Set the streaming server URL as the default
- From the top menu bar in HANA Studio choose Window -> Preferences
- Then navigate to SAP HANA smart data streaming section
- In the Default Server URL box change from localhost:9786 to your streaming server URL
- Click Change and select it
- Click OK

This tells HANA studio to connect to your streaming server by default.
Hands-on Tutorial: Building a Simple SAP HANA Smart Data Streaming Project

Create a new Streaming Project using the Visual Editor, and add Input streams

5. Create a new Project:
 - From the menu: File -> New -> Project
 - Then in the New Project window select the wizard: SAP HANA smart data streaming -> New Streaming Project and click Next
 - Enter a name for the project: towermon
 - Click the [Finish] button

We’ll start by connecting to our first data source, which is a csv-formatted file of static reference data for the weather stations.

6. Add a File/Hadoop CSV Input adapter to the project:
 - Open the Input Adapters drawer on the palette by clicking on the drawer
 - Click on File/Hadoop CSV Input to select it
 - Click on the diagram to add it

7. Configure the input Adapter:
 - Hover the mouse over the File_Hadoop_CSV_Input1 adapter to display the popup shape toolbar
 - Click on the Edit Properties button on the popup shape toolbar
8. Set the adapter Directory property
 - Click on the value field to the right of the **Directory** property and then click on the browse button that appears
 - Copy and paste or type in the path to the data files on your Streaming server
 - Recall that in the Pre-requisites section you were asked to unzip streaming contents of the towermonTutorial file to /hana/data_streaming/<SID>/adapter/<WorkspaceName>/towermon3/streaming_data_files/ shared directory

 Note: You will not be able to browse to this directory from HANA Studio, you will have to type it in manually as browsing only works for directories on your local machine. Also remember to replace <SID> with the system ID of your HANA system and the <WorkspaceName> with the name of your workspace (default workspace name is “default”)
 - Now type the filename into the **File (in Directory)** property value: weather-sensor-inventory.csv

9. Set the adapter Has Header property
 - On the **Advanced** tab (still in the Adapter Properties dialog), set the **Has Header** property to **TRUE**
 - Click the **OK** button

 This tells the adapter to interpret the first row in the file as the set of column names

10. Use Schema Discovery to create an input window attached to this adapter and import the data schema to the new window
 - Click the **Schema Discovery** button in the shape toolbar
 - Select **weather-sensor-inventory.csv**
 - Click **Next**
 - Select Create new input window (with inline schema)
 - Click the **Finish** button

 Note: If you get an error, you probably didn’t set the adapter Directory property correctly, to point to a directory containing one or more valid data files. A second possible issue is that you are not connected to the Streaming server. To verify that you are connected to the Streaming server switch to the SAP HANA Streaming Run-Test perspective and right-click on the server entry. If the pop up menu shows the option “Connect Server” then select it to reconnect to the Streaming server.
11. Edit the new Window properties
 - Click the icon to the left of the window name in the shape header, and change the name to **iwWeatherStationReference**
 - Click the icon next to the **USAFWBAN** field in the schema to indicate this field is the primary key
 - Before we go further – let's save the file. Click “Save” in the toolbar.

12. As a best practice, we will now specify the Keep Policy for the **iwWeatherStationReference** input window.
 - Click the **Keep Policy** button in the shape toolbar
 - Leave the policy set to the default value of **All Rows**
 - Press **OK**

 Note: If you do not explicitly set the Keep Policy, HANA smart data streaming will default to a Keep All behaviour; however this will be reported as a warning at compile time. Explicitly setting the Keep Policy to KEEP ALL ROWS lets the compiler know that the behaviour is intentional and not an oversight. Once the policy is explicitly set, no compile time warning will be reported. Since the **iwWeatherStationReference** input window contains lookup data that will not grow over time, the Keep All policy is the appropriate setting.

13. Now that we have completed Schema Discovery we need to update the adapter properties for production. Modify the adapter Directory property
 - Recall that in the directory field we currently have the path `/hana/data_streaming/<SID>/adapters/<WorkspaceName>/towermon3/streaming_data_files` (or equivalent)
 - Now we’re going to modify the directory field to include only the path **after** the root sandboxing path
 - So if the full path was `/hana/data_streaming/<SID>/adapters/<WorkspaceName>/towermon3/streaming_data_files` then you will now specify `/towermon3/streaming_data_files/`
14. Now we’re going to use a little trick to import the schema for our other two input streams, even though we won’t actually use file adapters with them in our finished project – because they won’t load data from a file, but will receive streaming input.

- Repeat steps 6-9 above to create a 2nd file adapter, only set the File property to `sensorDataSample.csv`

- Use schema discovery (as in step 10 above), and select “Create new named schema” and click Finish
15. Now, using the same adapter that you created in step 14, change the file property to `weatherDataSample.csv` file and use schema discovery again to create another named schema.

Note: Schema discovery against comma delimited (.csv) files, determines the data type of a column based on the first data record in the file. If a column contains mixed data types (eg: integer and string values) then you may need to manually edit the column data type in the generated schema definition.

16. To complete our little schema import trick, we need to delete the 2nd adapter that we created in step 14 which was used to import the two schema definitions:
 - Select the adapter in the diagram
 - Press “Delete” (or right click and “Delete Element”)

Note: If at this point the two named schema you created are on top of each other in the diagram, you can click and drag the top one to move it.

17. Now we are going to add an event sequence number to the weather data schema, so that we can capture this data in a window. When we create the window in the next step, the sequence number will serve as the window key. This will use the Autogenerate feature, which requires a field with datatype = long
 - In the weatherDataSample_csv_schema1, click the “Add Column” button in the shape toolbar
 - Change the name of the new column to “Id”
 - Change the datatype of the new column to “long”
18. Now add an input stream for the sensor data
 • Click on the Select tool in the Palette, and on **Input Stream** in the Streams and Windows
 • Click on the diagram to add this to the project

 • Change the name of the new stream to **isSensorStream**
 • Click the **Connector** tool in the Palette, then click first on the header of **isSensorStream**, then click on the header of the **sensorDataSample**... schema to connect them

19. Repeat step 18 to add an input stream named **isWeatherStream** connected to the **weatherDataSample**... schema

20. Now we'll set up that Autogenerate field
 • Click the Set Autogenerate button in the toolbar of the new **isWeatherStream** input stream. **AUTOGENERATE (Id)** should appear automatically for you as in the screenshot below

 *This adds an Autogenerate clause to **isWeatherStream**. The incoming events don't set the value of this field but rather, the value will be incremented with each new event. This thus becomes a sequence number and can be used downstream as a primary key (a unique identifier) for a window that holds all the recent weather reports*
21. Finally, let’s do a little clean up before we move on to the next section. First, delete the NEWSTREAM object that was added by default when we created the project – we won’t be using it.

- Click on the NEWSTREAM shape in the diagram
- Press Delete (or right click on the shape and select “Delete Element”)
- Confirm
22. Let’s hide the two named schema. They take up space on our diagram, but at this point we don’t really need to see them
- Right click on the sensorDataSample… schema
- Select Delete from Diagram
- Repeat this for the weatherDataSample… schema

When you select “Delete Element”, the element is deleted entirely from the project. “Delete from Diagram” removes the element from the diagram, but it still exists in the project – in the underlying CCL.

If you wish to display the named schemas in the diagram at a later time, they are still available through the Outline panel.

23. And let’s clean up the diagram and save the project
- Click “All Iconic” tool in the Studio toolbar – this will collapse all the shapes to give us more room to work
- Click one of the layout buttons to arrange the shapes on the diagram
- Click the save button to save the project
Adding Continuous Queries to produce Derived Streams and Windows

Now that we have set up all the inputs, we’ll start to add a set of derived streams and windows, each of which has a continuous query attached to it. This series of continuous queries will transform the raw inputs into the outputs that we want.

At this point your project should look something like this:

24. Add a new window to hold the most recent weather data. This will hold all weather reports over the last 4 hours.
 - Click on Derived Window in the Palette
 - Click on the diagram to add it to the project
 - Change the name of the new window to RecentWeatherData

25. Connect the new window to its inputs
 - Click the connector tool in the Palette
 - Click the isWeatherStream shape and then the RecentWeatherData shape to add the first connection
 - Repeat to connect iwWeatherStationReference

Tip: to add multiple connections, you can hold down Shift when you select the connector tool and it will stay selected until you are finished adding connections. Then press Esc to release it.
26. Edit the Join Condition
 - Double click on the 2nd element in the Join Conditions ("i.wWeatherStationReference") compartment
 - Leave the Join type set to INNER
 - Select USAFWBAN from each source and click the Add button.
 - Click OK

 This does a look up and adds info about the location of the weather station to each incoming weather report

27. Add a GROUP BY clause
 - Click the Add Query Clause button on the shape toolbar and then select the Edit Group By Clause option from the pop up menu
 - Select the isWeatherStream.Id
column from the list of available columns
- Click the Add >> button to add it to the Selected columns list
- Press OK

This doesn’t actually do an aggregation – since every weather report has a unique ID. However, in order to take a stream, which doesn’t have a primary key, into a window, which does have a primary key, you must have a GROUP BY clause.

28. Add a KEEP policy to only keep the last 4 hours of weather reports
 - Click the KEEP Policy button in the shape toolbar
 - Select Time and enter 4 hours
 - Press OK

29. Select the columns to include
 - Click the Add Column Expression button on the shape toolbar and then choose the Copy Columns from Input option from the pop up menu
- Click the Select All button
- Uncheck the iwWeatherStationReference.USAFW BAN and iwWeatherStationReference.Station Name columns
- Click OK

We'll take all columns from both inputs, but we don't want duplicates.

30. Close the shape to make some room on the diagram

31. Add an Aggregation to compute weather stats for each station
- Click Aggregate in the Streams and Windows Palette and then click on the diagram to add it
- Change the name to LatestWeatherConditions
- Use the connector tool in the palette and click first on the RecentWeatherData shape and then on the LatestWeatherConditions shape

32. Select which columns to include
- Click the Add Column Expression button on the shape toolbar and then choose the Copy Columns from Input option from the pop up menu
Hands-on Tutorial: Building a Simple SAP HANA Smart Data Streaming Project

- Select All columns except:
 ...ReportSource
 ...ReportType
 ...QualityCode
 ...Id
- Click OK

33. Double click the GROUP BY element to group by the USAFWBAN column

34. Edit the column expressions in this window to compute the stats over the incoming data set
- Double click on each expression to edit it inline, or select the expression and press Ctrl+F2 to open it in a pop-up editor.
 Tip: use Home, End and in the inline editor, press Enter when finished.
- Add the last() function to the ObservationDT column
- Rename the TemperatureF column to CurrentTemp (double click on the name, edit, then press Enter)
- Add the last() function to the CurrentTemp column
35. Now let’s add 3 new columns with additional statistics
 - Click the **Add Column Expression** button on the shape toolbar and then choose the **Column Expression** option from the pop up menu – 3 times to add 3 new columns
 (they are added at the bottom, so scroll down to see them)
 - Edit the column names and expressions as shown below

 Tip: while in the editor, press Ctrl+Space for completion assist. In this case, in the inline editor, it will let you pick from available input columns and functions.

 AvgTemp: \(\text{avg(RecentWeatherData.TemperatureF)} \)
 MinTemp: \(\text{min(RecentWeatherData.TemperatureF)} \)
 MaxTemp: \(\text{max(RecentWeatherData.TemperatureF)} \)

36. As an Aggregate, the LatestWeatherConditions element will only contain a single record for each GROUP BY value. However, it is still a best practice to explicitly set the Keep Policy, which will also avoid generating a compile warning.
 - Click the **Keep Policy** button in the shape toolbar
 - Leave the policy set to the default value of **All Rows**
 - Press **OK**

37. Clean up and check your work
 - Use the layout tools to clean up your diagram
 - Click the **Compile** tool to compile your project
 - Check the **Console** to see if it compiled without errors.
 - If there are errors, check the **Problems** view to see the errors and correct them
 - If you don’t understand the error message, it may be easier to fix it in the CCL editor…so leave it and go on to the next step below
At this point your project diagram should look something like this:

![Project Diagram]

The CCL Editor

So far, we have been working in the Visual Editor of the HANA Studio. But you can also create and edit projects using the CCL editor.

38. Switch to the CCL editor
 - With your project open in the visual editor, press **F6**
 - If it asks you to confirm that you want to save changes, click **yes**

39. One of the features of the CCL editor is completion assist. To see how this works try the following:
 - Delete the datatype for the `TemperatureF` field of the `sensorDataSample_csv`
 - With the cursor still positioned after the column name, press **Ctrl+Space** for completion assistance
 - Start to type and then press enter when the desired value is highlighted
Now we're going to copy some CCL from another project. So first we need to add that project to our workspace.

- In the Streaming Development view click on the Open Streaming Project icon.
- Click the browse button and select the `towermon3` project with the location being that you copied to your local-Windows machine (unzipping this to the streamingdemos folder was a prerequisite for this tutorial) with the location being `C:\streamingdemos\towermon3\windows_files\towermon3_project`
- Click Finish.
41. Copy the SensorAnalytics window from the towermon3 project and add it to this project
 - Expand the towermon3 project in the File Explorer
 - Double click towermon3.cclnotation to open it in the visual editor
 - Select the SensorAnalytics shape (you may have to temporarily clean-up the diagram by clicking the All Iconic button to see it)
 - Press F6 to switch to the CCL editor

 By selecting the SensorAnalytics window in the visual editor, your cursor is now positioned (in the CCL editor) at the start of the statement that creates the SensorAnalytics window

 - Select the whole statement, including the preceding comment, down through the GROUP BY clause
 - Copy it to the clipboard (Ctrl+C or Copy from either the main menu or right-click menu)
 - Click on the editor tab for the towermon project – it should still be open in the CCL editor
 - Position the cursor at the end of the file and paste from the clipboard (Ctrl+V)

 Note: if you don’t paste at the end of the file this will result in the following error at compile time: “Element has forward reference in data flow” and you will not be able to compile

42. Check your work
 - Compile it to look for errors
 - Use F6 to go back to the visual editor to see the extended data flow
 - Drag the new stream to clean up the diagram
Add Alerts

We're almost finished creating our project. One more thing: we want to generate alerts. So we're going to add one more Continuous Query to produce an output window with the alerts.

43. Add a Filter connected to the SensorAnalytics window
 - Name the new stream: SensorAlerts
 - Connect from SensorAnalytics to SensorAlerts for input

44. Set the filter criteria
 - Right click on the filter icon in the shape
 - Choose Edit Where Clause
 - Replace “1” with the following expression that will be our filter criteria.

 WHERE
 SensorAnalytics.SensorTemperature > 120
 OR
 SensorAnalytics.TemperatureDelta > 20

 Tip: use Ctrl+Space for completion assist

At this point your project diagram should look something like this:
The Run/Test Perspective

Now let’s run and test our project. At this point, if you have errors in your project that you haven’t been able to correct, just open towermon3 in either the visual editor or CCL editor and work with it. It is just like the project you’ve been building, with a couple of extra windows.

45. Run the project
 - With the project you want to run open in either the visual editor or the CCL editor, click the black down arrow beside the Green run button on the main toolbar and select Run Streaming Project in Workspace <streamingserverURL> (the one you added in step 4)
 Note: you must use this method each time you start the project; starting and stopping the project by right-clicking it in the server view won’t give the same results
 - This will connect to your Streaming server, start the project, and switch the ESP Studio to the SAP ESP Run-Test perspective
 - If you have problems running the project check to make sure you are running it from your Streaming Host server and not trying to run it from a localhost server.

46. View the data in the WeatherStationReference input window
 - If your project started successfully, you will see it listed in the Server View
 - Expand the project to see all the streams/windows that are running
 - Double click on iwWeatherStationReference to open it in the Stream View – you should see some data in it

The iwWeatherStationReference window has a file input adapter attached to it – so it reads in that file on startup
If you don’t see the data check to make sure that the directory in the adapter properties is set correctly
47. Open other output windows in Stream View – though they won’t have data yet
 - Double click on **SensorAnalytics** in the Server view to open it in Stream View
 - Double click on **SensorAlerts** to also open it in Stream View

 These will both be empty, because they rely on data from the SensorStream and WeatherStream inputs which don’t have attached adapters and haven’t received any data yet

 Note: if you get a “Cannot subscribe to local stream” error message, it’s because one or both of these are set to LOCAL. Go back to the editor and toggle it/them to OUTPUT.

48. Use the Playback tool to stream in some sample data from a file
 - Go to the **Playback** view in the lower left tile of the Studio
 1. Click on the **Select Project** tool in the upper right corner of the Playback View.

 Note: this connects the playback tool to a project. If you only have one project running, one click will connect it. If you have multiple projects running it will prompt you to choose.
 2. Click the **Select Playback File** tool and select the **input-streams.csv** file in the **replay_data** folder of the **towermon3** project on your local Windows machine (C:\streamingdemos\towermon3\windows\files\replay_data\input_streams.csv)
 a. Change the file type in the window to *.csv so you can see your file
 3. (Optional) Change the **Playback Mode** to **rec/ms** and set a rate (eg: 0.01) to slow down the playback and get a better view of the alerts being generated over time.
 4. Click the **Start Playback** button

 Note: To re-run the playback file, you can stop and restart the project from the Server View.

49. You can now view the output in the Stream View
 - Click the Stream View tabs to view SensorAnalytics and SensorAlerts
 - View latest weather conditions by double clicking the output window in the Server View
Hands-on Tutorial: Building a Simple SAP HANA Smart Data Streaming Project

More Exploration (Optional)
If you have more time, either now, or later, here are some additional things to explore using the same project we’ve been working with.

1. Different Window policies

 a. In the Visual Editor, expand the **RecentWeatherData** window, expand the “Other” compartment, and double click on the KEEP policy. Here you’ll see what your options are.

 b. Window size: can be based on number of rows or time

 i. In the time field you can use most English keywords or abbreviated keywords, e.g. min, minutes, sec, hours, day, month, etc.

 ii. If specifying number of rows, you can optionally specify a slack value to improve performance. Without slack, when the window is full, each new event will push the oldest event out. But with slack of 10, for example, when then window is full it will grow to be 10 events larger than the window size, and then delete the oldest 10. It’s just more efficient than one-for-one deletes

 c. Jumping windows:

 i. By default, windows are rolling windows: as new events arrive, or as the clock ticks, the oldest events are pushed out according to the KEEP policy. If you check the keyword EVERY, the window becomes a jumping window, where the window is cleared by the KEEP policy and starts over. So if you set the policy to KEEP EVERY 4 HOURS, every 4 hours all the events in the window would be deleted and the window would start collecting again.

 d. KEEP PER Clause

 i. This is a new window type that applies the KEEP policy to groups of events, where the groups are based on common values of a column or columns. For an example of this, look at the KEEP policy for the **SensorAnalytics** window. Here, the window is keyed by EquipmentID and ObservationDT, but we want to keep roughly 100 readings for each EquipmentID. Without the “PER” clause, the keep policy would apply to the whole window, so if we only kept the last 100 readings, if some sensors report more frequently than others, we might have lots of readings for some and no readings for others.

2. Capture ESP output in SAP HANA or SAP Sybase IQ

 a. It’s as simple as adding an output adapter, attaching it to the output stream or window that you want to capture, and configuring the adapter

 b. You’ll see the Sybase IQ Output and HANA Output adapters on the output adapters palette.
3. Autogenerate
 a. Autogenerate can be used to apply an automatically generated sequence number of events arriving in an input stream or input window. It's particularly useful where you want to create an input window where the incoming event stream doesn't have a natural key. All ESP windows must have a primary key column, which has a unique value in each row.
 b. In our towermon3 project, take a look at the isWeatherStream input stream in either the visual editor or the CCL editor. You'll see that it uses the Autogenerate clause to indicate that the Id field should be incremented with each incoming event.
 c. Now you might ask: why did we use this on a stream? After all, streams don't require keys. But if you look at the next step in our dataflow, you'll see why. (Hint: see the note in step 24)

4. Flex Operator
 a. In the towermon3 project, select LatestWeatherConditionsPulsed in the Visual Editor. This is an example of a Flex Operator. Flex operators are custom operators that run event handlers written in CCL Script – the ESP scripting language – on the arrival of each new event.
 b. Press F6 to go to the CCL Editor and view the code for this Flex Operator. Flex operators are an important feature of SAP HANA Smart Data Streaming, as they add tremendous versatility, but they are an advanced feature and outside the scope of this workshop.
 c. If you study this Flex operator, however, you'll notice the use of dictionaries to retain state, and the built-in timer that fires at fixed intervals. This particular operator publishes the current weather statistics every 1 minute.

5. Parameters and Project Configuration Files
 a. Parameters can be used to change the values of constants at runtime. In step 41 above, we could have used two parameters in the filter expression instead of hard coding the values being checked. MaxTemp and MaxTempDelta. Open the towermon3 project in the CCL editor and scroll to the very top. You'll see a global declaration block where they are defined. This also sets the default values.

     ```
     declare
     parameter float MaxTemp := 120.0;
     parameter float MaxTempDelta := 20.0;
     end;
     ```

 Then scroll down the “CREATE OUTPUT WINDOW SensorAlerts ...” to see the parameters being used in the WHERE clause.

 b. The parameter values can be changed, however, at run time, after the project has been compiled.

 c. In towermon3 project in the SAP HANA Streaming Development view in the Project explorer, double click on towermon3.ccr. This is the project configuration file editor. It allows various project properties to be set independently of the CCL, allowing a project to be compiled once, but then deployed with different project configuration files that contain parameter settings as well as things like adapter properties that contain connection information.

 d. Go to the Parameters tab to see how you can change the values of these parameters, even after the project has been compiled.
6. Project Bindings
 a. Bindings allow you to connect one project to another project. In fact you can even create a
 network of projects. A binding connects an output stream (or window) from one project to an
 input stream/window in another project. The binding can be initiated from either direction.
 b. You can add input bindings to a project to connect one or more input streams/windows to the
 output from another project
 c. First, be sure a project is running and then open a project configuration file (e.g. double click
 towermon3.ccr)
 d. Go to the Clusters tab and click the Discover button. Select the server your Virtual Machine
 (VM) is on and click OK
 i. Click on the server url you just added and enter the username and password in the
 cluster details section
 e. Now go to the Bindings tab. Click the Discover button and select the input that you want to add
 a binding to. Now, on the right, choose the project and output stream/window to bind to
 f. Uses for bindings include:
 i. If a project is so large that it is capacity constrained on the box it’s running on, rather
 than buying a bigger box, you can break the project into multiple smaller
 interconnected projects running across multiple machines
 ii. You can dynamically add new calculations to a live project. You don’t actually change
 the live project; just start a new project that binds to outputs from the existing project
 and does further computations.

7. Diagrams
 a. Using the Visual Editor, compare the inputs of the towermon and towermon3 projects. Do you
 see the difference? The towermon3 project has a brown schema block that doesn’t appear on
 the towermon3 diagram. In reality, the projects are the same - it’s just the diagrams that are
 different. Here’s the explanation: diagrams don’t have to show all parts of a project. And in fact
 you can create multiple different diagrams for a single project. This is very useful for large
 projects, where a single diagram with everything might become too awkward.
 b. In the towermon3 project, in the visual editor, select the isSensorStream. Right click on the
 shape and choose Show Related Shared Components. The named schema will now appear on
 the diagram.
 c. Now select the schema you just added, right click on the shape and select Delete from
 Diagram. It gets removed from the diagram, but it’s still in the project. You can see it if you look
 at the underlying CCL.

8. Outline
 a. The Outline tab, in the upper right corner of the authoring perspective (by default) can also be a
 useful tool for seeing all elements of a project, whether they are shown in the diagram or not. If
 an element exists in the project but not on the current diagram, you can drag it from the outline
 onto the diagram.

9. Comments
 a. In the towermon3 diagram, hover the mouse over the RecentWeatherData shape. The tooltip
 will show a description of the function of this window.
b. Select the window shape and then view the properties in the Properties View at the bottom of the Studio. You'll see that the description you saw in the tooltip for the shape is set in the Comment property

10. Properties View

a. The Properties View is context sensitive and will let you view and edit the properties of the item selected in the diagram

11. Run multiple projects

a. You can run multiple projects on a single server. Try it. Start 2 or more projects. Then see how they're listed in the Server View and how you can use the various run/test tools with them

12. Manual Input tool

a. The manual input view in the SAP HANA Streaming Run/Test perspective (beside the playback tab) is very useful for debugging. Try it. The first step is to connect it to an input stream by clicking the Select Stream button in the upper right corner of the Manual Input view. Then just enter values and Publish (Green Arrow/Play) button on the upper right corner of the view).

13. Monitor tool

a. After starting the project (eg: towermon or towermon3_project) in the SAP HANA Streaming Run-Test perspective, right click on the project in the Server View and choose Show In > Monitor View. Select the Monitor tab if it isn’t already displayed. Start a Playback (Hint: Refer to step 48 above) and then adjust the Range values to see how the monitor displays load. For example at a playback rate of 0.1 rec/ms on the input-streams.csv file, range values for Rows per second of 10 and 1 will illustrate how the Monitor visualizes the status of the different elements in the SDS (smart data streaming) project based on current load.

b. You can then choose whether to have colors indicate throughput (Rows per Second) or queuing (Queue depth). If any of the shapes show a black portion, that indicates % cpu utilization. The Monitor can be a very useful tool for identifying bottlenecks in a project.