Applies to:
SAP Business Communications Management 6.0 and higher. For more information visit SAP Business Communications Management.

Summary
The SAP BCM implementation and voice channel deployment is a big challenge due to the different concepts and protocols involved in VoIP technology. This article describes the main protocols used to establish a VoIP call applied to SAP BCM including practical examples and a technical overview of VoIP packets over the network.

Author: Heber Olivar Silva
Created on: 23 March 2010

Author Bio
Heber Olivar Silva is a SAP BCM Consultant and VoIP technology specialist (Cisco CCVP certified) with 9 years experience with legacy telephony systems, Voice over IP, Unified Communications and contact center solutions.
Table of Contents

System Landscape .................................................................................................................. 3
VoIP Signaling protocols ......................................................................................................... 4
  H.323 protocol stack .............................................................................................................. 4
  SIP protocol – Session Initiation Protocol ........................................................................... 7
  RTP and RTCP protocols ...................................................................................................... 9
Codecs .................................................................................................................................. 10
VoIP bandwidth per call .......................................................................................................... 11
Quality of Services – QoS ......................................................................................................... 12
  QoS tools .............................................................................................................................. 12
    Differentiated Services – DSCP ......................................................................................... 12
    Expedited Forwarding and DSCP Values .......................................................................... 13
Related Content ...................................................................................................................... 15
Disclaimer and Liability Notice .............................................................................................. 16
SAP BCM Overview

SAP Business Communications Management (SAP BCM), one of the newest members of SAP CRM solution, allows companies to improve their Contact Center areas and deploy communication-enabled business processes. The SAP BCM solution provides multi-channel integration, such as e-mail (push mode), instant messaging, SMS and telephony to be integrated with SAP CRM.

The telephony channel provided by the BCM uses VoIP technology, also known as IP Telephony. Beside the large portfolio of SAP solutions and technologies, the use of VoIP technology require a extra knowledge about networks and telecommunication due to the numerous technical details and protocols involved.

VoIP technology allows voice communication using the Ethernet network and on the Internet, allowing CSR mobility and a contact center solution with multiple sites, contingency and redundancy scenarios contributing to the cost optimization.

System Landscape

Starting at the SAP BCM landscape is necessary to understand and plan how to deliver a phone call, often still using the TDM (time-division multiplexing) traditional telephony. First of all you need to understand that SAP BCM is not a CTI connector available from SAP to connect with other CTI solutions, the BCM is a comprehensive IP communications system such as IP-PBX that allows the use of VoIP not only in the contact centers but also to all users who wish to enjoy the benefits of mobility that technology permits.

Actually some Telecom operators already offer to their customers a direct VoIP connection, but mostly the interface connection between provider and customer is still done through TDM traditional telephony (E1 - Europe standard and T1 - USA standard) with signaling protocols such as CAS and CCS. These communication interfaces are not connected directly to the BCM being necessary convert these traditional interfaces and protocols for VoIP standards. This conversion is done by so-called VoIP gateways or PBX that supports VoIP technology and can act as a gateway and still allowing access to back-office departments using PBX infrastructure.

BCM adopts the two main VoIP signaling protocols currently used by telecom manufactures allowing interconnectivity with third party equipment (gateway or pbx voip-enabled). The connection can be made using the signaling protocols H.323 and SIP and voice codecs G.729 and G.711.

Figure 1: Using a VoIP Gateway
VoIP Signaling protocols

The main goal of VoIP signaling protocols is to create, manage, and terminate a bidirectional Real-time Transport Protocol (RTP) stream between endpoints involved in a conversation.

H.323 protocol stack

The H.323 is a suite of protocols defined by the International Telecommunication Union (ITU) and actually is the most widely deployed voice protocol. The protocols specified by H.323 include:

- H.225.0 Call Signalling (Q.931, ISDN signaling) is used to establish a connection between two H.323 systems and endpoints.
- H.225 Registration, Admission, and Status (RAS) is used between endpoints (terminal and gateways) to perform registration, admission control, bandwidth changes, status, and disengage procedures between endpoints.
- H.245 Control Signaling is used to exchange end-to-end control messages regarding the operation such as capabilities exchange, opening and closing of logical channels used to carry media streams and flow-control messages.
Figure 3: H.323 call flows (H.225.0)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>14.5</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: setup, openLogicalChannel</td>
</tr>
<tr>
<td>27</td>
<td>14.5</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0</td>
<td>CS: callProceeding</td>
</tr>
<tr>
<td>29</td>
<td>14.5</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0</td>
<td>CS: alerting</td>
</tr>
<tr>
<td>55</td>
<td>20.7</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0</td>
<td>CS: connect terminalCapability</td>
</tr>
<tr>
<td>57</td>
<td>20.7</td>
<td>10.100.1.20</td>
<td>10.100.1.20</td>
<td>H.225.0/H.245</td>
<td>CS: empty terminalCapability</td>
</tr>
<tr>
<td>62</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty masterSlaveDelete</td>
</tr>
<tr>
<td>63</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty masterSlaveDelete</td>
</tr>
<tr>
<td>64</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty openLogicalChannel</td>
</tr>
<tr>
<td>65</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty openLogicalChannel</td>
</tr>
<tr>
<td>66</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty openLogicalChannel</td>
</tr>
<tr>
<td>67</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty openLogicalChannel</td>
</tr>
<tr>
<td>68</td>
<td>20.9</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: empty openLogicalChannel</td>
</tr>
<tr>
<td>1250</td>
<td>29.3</td>
<td>10.100.1.5</td>
<td>10.100.1.20</td>
<td>H.225.0</td>
<td>CS: releaseComplete</td>
</tr>
<tr>
<td>1251</td>
<td>29.3</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0</td>
<td>CS: releaseComplete</td>
</tr>
<tr>
<td>1253</td>
<td>29.3</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0/H.245</td>
<td>empty endSessionComm</td>
</tr>
<tr>
<td>1255</td>
<td>29.3</td>
<td>10.100.1.20</td>
<td>10.100.1.5</td>
<td>H.225.0</td>
<td>CS: releaseComplete</td>
</tr>
</tbody>
</table>

**Frame 26 (576 bytes on wire, 576 bytes captured)**
- Internet Protocol, Src: 10.100.1.5 (10.100.1.5), Dst: 10.100.1.20 (10.100.1.20)
- Transmission Control Protocol, Src Port: 21080 (21080), Dst Port: h323host
- TPKT, Version: 3, Length: 510

**Q.931**
- Protocol discriminator: Q.931
- Call reference value length: 2
- Call reference flag: Message sent from originating side
- Call reference value: 0035
- Message type: SETUP (0x05)
- Sending complete
- Bearer capability
- Progress indicator
- Calling party number: '1180889597'
- Called party number: '3275'
- User-user
- H.225.0 CS

**Note:** Analyzing package generated by H.225.0 protocol is possible to identify the parameters “Calling Party Number” and “Called Party Number” with the parties involved in this connection request.
Figure 4: H.323 call flows (H.245)

Note: Analyzing package generated by H.245 protocol is possible to identify the parameters “audioData” with the codec negotiated in this connection and “g711Alaw64k” with the value indicating the voice sample size.
SIP protocol – Session Initiation Protocol

SIP is a protocol developed by Internet Engineering Task Force (IETF) and compliant with the following standards RFC 2543, RFC 3261 and RFC 3665. SIP uses ASCII-text-based messages to communicate and you can implement and troubleshoot very easy if compared with H.323. SIP is a protocol that can be used with other IETF protocols to build a complete multimedia architecture such as Session Description Protocol (SDP) for describing multimedia sessions.

Figure 5: SIP call flows (INVITE msg)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>8:55</td>
<td>192.168.1.20</td>
<td>192.168.1.203</td>
<td>SIP/SDP</td>
<td>Request: INVITE sip:101@123</td>
</tr>
<tr>
<td>102</td>
<td>8:56</td>
<td>192.168.1.203</td>
<td>192.168.1.20</td>
<td>SIP</td>
<td>Status: 100 Trying</td>
</tr>
<tr>
<td>104</td>
<td>8:59</td>
<td>192.168.1.203</td>
<td>192.168.1.20</td>
<td>SIP</td>
<td>Status: 180 Ringing</td>
</tr>
<tr>
<td>121</td>
<td>11:0</td>
<td>192.168.1.203</td>
<td>192.168.1.20</td>
<td>SIP/SDP</td>
<td>Status: 200 OK, with session</td>
</tr>
<tr>
<td>123</td>
<td>11:0</td>
<td>192.168.1.20</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Request: ACK sip:101@192.123</td>
</tr>
<tr>
<td>2016</td>
<td>16:1</td>
<td>192.168.1.203</td>
<td>192.168.1.20</td>
<td>SIP</td>
<td>Request: BYE sip:5008@192.123</td>
</tr>
<tr>
<td>2043</td>
<td>16:3</td>
<td>192.168.1.20</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Status: 200 OK</td>
</tr>
</tbody>
</table>

Note: Analyzing package generated by SIP protocol is possible to identify the parameters “From” and “To” with the parties involved in the INVITE message.
### Figure 6: SIP call flows (SDP parameters)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>8:55</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP/SDP</td>
<td>Request: INVITE sip:101@192.168.1.203</td>
</tr>
<tr>
<td>102</td>
<td>8:55</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Status: 100 Trying</td>
</tr>
<tr>
<td>104</td>
<td>8:59</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Status: 180 Ringing</td>
</tr>
<tr>
<td>121</td>
<td>11:0</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP/SDP</td>
<td>Status: 200 OK, with session establishment parameters</td>
</tr>
<tr>
<td>123</td>
<td>11:0</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Request: ACK sip:1010@192.168.1.203</td>
</tr>
<tr>
<td>2016</td>
<td>16:1</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Request: BYE sip:5008@192.168.1.203</td>
</tr>
<tr>
<td>2043</td>
<td>16:3</td>
<td>192.168.1.203</td>
<td>192.168.1.203</td>
<td>SIP</td>
<td>Status: 200 OK</td>
</tr>
</tbody>
</table>

**Note:** Analyzing package generated by SIP/SDP protocol is possible to identify the parameters “Media Attribute (a): rtpmap” with the codec negotiated in this connection (0 PCMU/8000 is G.711 according to standard) and “Media Attribute (a): ptime” with the value indicating the voice sample size.
RTP and RTCP protocols

In a VoIP network, the voice data are transported using RTP according to standards RFC 1889 and RFC 3550 that define packet format for delivering audio and video over the internet. The RTCP is an auxiliary protocol to RTP that provides information for RTP streams but does not transport any voice data and used for QoS reporting gathering statistics such as bytes sent, packets sent, lost packets, jitter, feedback and round-trip delay.

Figure 7: RTCP protocol

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>59136</td>
<td>28.1</td>
<td>10.100.1.5</td>
<td>192.168.13.</td>
<td>RTCP</td>
<td>Receiver Report</td>
</tr>
</tbody>
</table>

Frame 59137 (126 bytes on wire, 126 bytes captured)
Internet Protocol, Src: 192.168.13.34 (192.168.13.34), Dst: 10.100.1.5 (10.100.1.5)
Internet Control Message Protocol
   Type: 3 (Destination unreachable)
   Code: 3 (Port unreachable)
   Checksum: 0xa14b [correct]
Internet Protocol, Src: 10.100.1.5 (10.100.1.5), Dst: 192.168.13.34 (192.168.13.34)
User Datagram Protocol, Src Port: 32553 (32553), Dst Port: 8047 (8047)
Real-time Transport Control Protocol (Receiver Report)
   [Stream setup by H245 (frame 36893)]
   10... .... = Version: RFC 1889 Version (2)
   ...0 0001 = Reception report count: 1
   Packet type: Receiver Report (201)
   Length: 7 (32 bytes)
   Sender SSRC: Oxa7624cad (2808237229)
   Source 1
   Identifier: 0xc2e2fd78 (3269655928)
   SSRC contents
      Fraction lost: 0 / 256
      Cumulative number of packets lost: 0
      Extended highest sequence number received: 3827
      Interarrival jitter: 38
      Last SR timestamp: 0 (0x00000000)
      Delay since last SR timestamp: 0 (0 milliseconds)
   Real-time Transport Control Protocol (Source description)

Note: Analyzing package generated by RTCP protocol is possible to identify the packets lost and inter-arrival jitter.
Codecs
A codec performs encoding and decoding of a digital stream. It is important to consider which codec will be deployed and prepare the correct capacity planning to network bandwidth. Coding techniques are standardized by ITU and there are several types, but we will focus in G.729 and G.711 that are supported by SAP BCM.

G.711 encoding telephone audio on a 64 kbps channel without compression and offers toll-quality voice conversations at the cost of bandwidth consumption and is suited mainly to be deployed in LAN environments.

G.729 encoding telephone audio on an 8 kbps channel with compression and offers a reduction in bandwidth consumption at the cost of near toll-quality voice conversations and is suited mainly to be deployed in WAN environments.

Voice sample size is a variable that can affect total bandwidth used and must be considered in a design phase because of the voice sample size used to build voice packet influences direct on packet sizes and the necessary bandwidth. Setting more voice samples in a voice packet, the packets are larger and the bandwidth is reduced, but the risk to transport this packet over the network is bigger and excessive delays and packet loss may happen. The BCM default value is 30 ms, but you can change if it is necessary.

Table 1: Packets to transmit on second of conversation.

<table>
<thead>
<tr>
<th>Codec</th>
<th>Bandwidth (kbps)</th>
<th>Sample Size (ms)</th>
<th>Sample Size (Bytes)</th>
<th>Packets Per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711</td>
<td>64</td>
<td>30</td>
<td>240</td>
<td>33</td>
</tr>
<tr>
<td>G.711</td>
<td>64</td>
<td>20</td>
<td>160</td>
<td>40</td>
</tr>
<tr>
<td>G.729</td>
<td>8</td>
<td>30</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>G.729</td>
<td>8</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>

To determine the number of bytes encapsulated in a packet based on the codec bandwidth and sample size use the following formula:

$$\text{Bytes per Sample (Bytes)} = \frac{\text{Sample Size (ms)} \times \text{Codec Bandwidth (Kbps)}}{8}$$
Figure 8: Adjusting BCM packet length

Note: It’s possible to adjust the packet length using Registry Editor in CEM Server and changing the value to DWORD `RTPPacketLengthMS`. BCM default value is 30 ms.

VoIP bandwidth per call

The total bandwidth necessary to ensure VoIP traffic takes into account data-link header, IP header, UDP header, RTP header, voice codec and sample size.

Consider the following values:

- Ethernet header = 18 bytes
- IP header = 20 bytes
- UDP header = 8 bytes
- RTP header = 12 bytes
- Voice payload to G.711 = 160 bytes, G.729 = 20 bytes
To determine the total bandwidth per VoIP calls use the following formula:

\[
\text{Total Bandwidth (Kbps)} = \frac{\text{Layer 2 Overhead (Bytes)} + \text{IP UDP RTP Overhead (Bytes)} + \text{Sample Size (ms)}}{\text{Sample Size (ms)}} \times \text{Codec Speed (Kbps)}
\]

\[
\text{Total Bandwidth (Kbps)} = \frac{18 + 40 + 20}{20} \times 8
\]

\[
\text{Total Bandwidth (Kbps)} = 31.2 \text{ Kbps (per call using G.729 codec)}
\]

**Note:** Note that protocols headers influence the data bandwidth required. For G.729 VoIP call is not only 8 Kbps but 31.2Kbps.

### Quality of Services – QoS

Configuring voice in a data network requires network services with low delay, minimal jitter, and minimal packet loss. The necessary bandwidth must be calculated based on the codec used and the number of concurrent connections. QoS must be configured to minimize jitter and loss of voice packets.

**Jitter:** Jitter is a variation in the arrival of coded speech packets in a VoIP network.

**Delay:** Delay is the time spent between the spoken voice and the arrival of the voice packet at the endpoint that results from multiples factors such as distance, coding, compression, serialization and buffers. According with [ITU-T G.114](#) recommendation the value acceptable for most user applications is between 0 and 150 ms.

**Packet loss:** Lost packets are not recoverable (RTP/UDP protocol characteristic) resulting in gaps in the conversation caused by unstable network, network congestion, and too much variable delay.

### QoS tools

Real-time applications have different characteristics and requirements from traditional data applications, therefore voice applications tolerate minimal variation in delay, packet loss and jitter. To effectively transport VoIP traffic, mechanisms are required to ensure reliable delivery of voice packets know as QoS techniques.

In summary QoS features implement the following services:

- **Guaranteed bandwidth:** Ensure that necessary bandwidth is always available to support voice and data traffic.
- **Avoid network congestion:** Ensure that LAN and WAN infrastructure can support the traffic volume.
- **Shape network traffic:** Traffic-shapping tools ensures smooth and consistent delivery of frames over the network.
- **Set traffic priorities across the network:** Mark voice packets as priority and routes to the right priority queue.

### Differentiated Services – DSCP

Differentiated Services, known as DiffServ, consist in a mark in the packets at moment that they ingress into a network and permit that network devices QoS-enabled can evaluate this mark relate with the class of service and do the right choice to route them. To permit this marking in a multimedia network, the IP header has been redefined to include a 6-bit Differentiated Services Code Point (DSCP) field ([RFC 2474](#), [RFC 2475](#), [RFC 2597](#)).
Expedited Forwarding and DSCP Values

The RFC 2598 defines the expedited forwarding behaviors that simply states that a packet with the EF DSCP should minimize delay, jitter and loss, up to a guaranteed bandwidth level and suggests that a QoS action must be performed like queuing tools to minimize the time that EF packets spend in a “priority queue”.

The expedited forwarding uses a DSCP name of EF, whose binary value is 101110 and decimal value of 46.

**Figure 9: DSCP value**

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>21:1</td>
<td>10.100.1.3</td>
<td>10.100.1.20</td>
<td>RTP</td>
<td>PT=ITU-T G.711 PCMA, SSRC</td>
</tr>
</tbody>
</table>

- Frame 88 (214 bytes on wire, 214 bytes captured)
- Ethernet II, Src: AlcatelB_53:ef:7b (00:80:9f:53:ef:7b), Dst: Dell_55:d5:
- Internet Protocol, Src: 10.100.1.3 (10.100.1.3), Dst: 10.100.1.20 (10.100
- Version: 4
  - Header length: 20 bytes
- Differentiated Services Field: Oxb8 (DSCP Ox2e: Expedited Forwarding;
  1011 0.. = Differentiated Services Codepoint: Expedited Forwarding)
  - . . .0 = ECN-Capable Transport (ECT): 0
  - . . .0 = ECN-CE: 0
- Total Length: 200
- Identification: 0x0000 (0)
- Flags: 0x04 (Don’t Fragment)
- Fragment offset: 0
- Time to live: 64
- Protocol: UDP (0x11)
- Header checksum: 0x228f [correct]
- Source: 10.100.1.3 (10.100.1.3)
- Destination: 10.100.1.20 (10.100.1.20)
- User Datagram Protocol, Src Port: 32544 (32544), Dst Port: lm-perfworks
- Real-Time Transport Protocol

**Note:** Analyzing RTP package is possible to identify the parameters “Differentiated Services Field” with 10110 that correspond with 46 (Expedited Forwarding).
Figure 10: Adjusting DSCP value

| Note: It’s possible adjust the DSCP value in CEM Server (Call Dispatcher) using the parameter “RTP_DSCP” and the default Codec using the parameter “CodecPri1”. |
Related Content

**BCM System Administrator – Administration Guide ver. 6.4**
Cisco QOS Exam Certification Guide, 2nd Edition
Cisco Voice over IP (CVOICE), 3rd Edition
G.114 – ITU Recommendation G.114 – One-way Transmission Time
G.711 – ITU Recommendation G.711
G.729 – ITU Recommendation G.729
H.323 – ITU Recommendation H.323
RFC 1889 – RTP: A Transport Protocol for Real-Time Applications
RFC 2474 – Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
RFC 2475 – An Architecture for Differentiated Services
RFC 2597 – Assured Forwarding PHB Group
RFC 2598 – An Expedited Forwarding PHB
RFC 2543 – SIP: Session Initiation Protocol
RFC 3261 – SIP: Session Initiation Protocol
RFC 3465 – Session Initiation Protocol (SIP) Basic Call Flow Examples
RFC 3550 – RTP: A Transport Protocol for Real-Time Applications
Wireshark – Network protocol analyzer

For more information, visit the Customer Relationship Management homepage
Disclaimer and Liability Notice

This document may discuss sample coding or other information that does not include SAP official interfaces and therefore is not supported by SAP. Changes made based on this information are not supported and can be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods suggested in this document, and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of this technical article or code sample, including any liability resulting from incompatibility between the content within this document and the materials and services offered by SAP. You agree that you will not hold, or seek to hold, SAP responsible or liable with respect to the content of this document.