Applies to:

SAP Net Weaver Process Integration 7.1 (SAP PI 7.1). For more information, visit the SOA Management
homepage.

Summary

This document talks about creating and using a custom adapter module to PGP encrypt a plain txt file
through SAP PI 7.1 using third part libraries (DIDI SOFT).

Author: Amit Srivastava, Anshul Chowdhary
Company: MNC
Created on: 27 July 2011

Author Bio

Amit Srivastava is working as a Consultant on SAP XI/Pl. He began his career on Nov-2007 and
¥==1 since then he has been working on SAP XI/PI. His area of expertise is SAP XI/PI, JAVA.

m Anshul Chowdhary is working as a Technical Consultant. He began his career on JULY-2006 and
= =1 has an experience of around 1 year on DOT NET. He started working on SAP XI/PI from December-
4a 2007 and is hooked to the technology.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com
© 2011 SAP AG 1

https://www.sdn.sap.com/irj/sdn/soa-management
https://www.sdn.sap.com/irj/sdn/soa-management

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Table of Contents

LAV AT L= o o PP 3
LIETe g1 (or= T d=T= 2= 4o PR 3
e Lo Tod TSI] (=] o PSSP PPPPTPN 4
Lo Tod YIS0 [T T SRR 4
Generic Structure of File data SENTTO Plo ettt e e e e ettt e e e e e ettt e e e e e e e annnneeeaaeeaanns 4

e I LU oy 0 I O = T o [PPSR PPPR 6

[1L (o101 (g Vo PP PPPPRRPRTRRPORE 6

File Encryption and digitally SIQNING:eeie oot e e e e e e e et e e e e e e s e e aa e e e e e e e e e st b e raeeeeesearreees 6
0o L8] (ST =T T | SRR 6
(=g Tel Y ol Lo g I\ o o [N] [T D I=Y fo | o [PPSO PP PPRTPRRPP 6

L] 01U oo OSSP T TP P PPPPRTPP PP 6

(O 11101 U | TP PRSP T PP PPUUPPRRPTI 6
CONfIGUIADIE PATAIMELEI: ...ttt h et ookt oo st o4kt e ekt e e et e e et e e e e nbe e e e 6

(@1 LT D T=T 1= o Lo (=T ol [PO PPPRRTPTPI 6
[T TotiTo] g F= 11 YT PO P PP OUPPPTPPPRRN 6
COdE: ENCIYPLION COUR ... it s 7
Receiver Communication Channel ConfigUIatioN:ooiuiriiiiiiiie e 10
Y o] 0 1=] o To [PP PUPPPPPPPRRN 10
Y o] 01T o 5 - USRS OPPR 10

[g ToT Y o] (o] o o O PP RO TP R PUPPPPPPRRON 11

(D To 1 e TS o g F= LU (=P TP PP PSPPSR PPPR 11
RN o1 (T I OLo] o1 =] o | PP TR PPPPPPRI 12
Disclaimer and Liability NOTICEuuuuueieiieiiiiiieieiieeeeeeeeeeeseeseeeaeeeeeeeaeeeseaeseasasesssssssssssesasesssssssssssssssssssssssssnsssnnnnes 13
SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 2

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Why this design?

This integration design provides a secure, traceable and seamless process for transferring sensitive
information files in B2B kind of scenarios. EG: Sensitive files to be sent to Banks from SAP etc.

By using this design during these transmissions, all steps involved (refer Fig: 2) in sending such files are
logged, acknowledgements are provided for status of the transfer to the source system (EG: SAP) and E-
mail alerts can also be sent for errors.

Technical Realization

System Architecture diagram:

-
—PI System \
PGP Encryption module
File created
encrypled and
Fle contents i dthizn] Enciypled and
T | PGP encayplion) ¥ sioned fles
Sander private
Heys
_______________]
Fila delvery
Acknowledgement J
|
|
I
- intranat pi——InlEmel—e
I
I
\ E J
Fig 1: System Architecture.
SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 3

Process steps:

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Process Flow

Step 1:

of file.

v

Approval to initiate transfer

Step 2:
File sent to Pl using RFC
connection(works on
HTTP).

Target Name info sent—p

Step 3:
Pl receives the file and
forwards it internally
for encryption.

Step 6:
Pl generates
acknowledgements for
success/failure.

Y

Step 5:

PIFTP’s the file to the target

location according to the
target info sent to it.

4

4

Step 7:
Pl sends the
acknowledgements to

the source system

Process End

Step 4:
Pl Encrypts and
Signs(optional) the
file.

P

Fig 2: Process Flow.

Process design:

The data to be encrypted is received in PI through a Proxy in the structure shown below. The data thus
received is converted into a file using the SimpleXML2Plain post the Encryption module is called to encrypt

the resulting payload.

Generic Structure of File data sent to PI:

Data from the Files to be encrypted are either sent to Pl or mapped and created in Pl in the following
structure (which also has other metadata for routing and updating status required later in the process):

<ZFIS_ACHDATA>
<ZFIS_FPAYH>
<ZBUKR/>
<HBKID/>
<RZAWE />
<HKTID/>

<ZBNKS/>

SAP COMMUNITY NETWORK

SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG

4

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

<ZBNKY/>
<ZBNKL/>
<SRTF1/>
<SRTF2/>
<SRTF3/>
<RENUM/>
<FileName/>
</ZFIS_FPAYH>
<FData>
<Lines/>
</FData>

</ZFIS_ACHDATA>

Sample payload for one such file received by PI (in our scenario) is as shown below:

<ZFIS_ACHDATA>
<ZFIS_FPAYH>
<ZBUKR>X11</ZBUKR>
<HBKID>Y11</HBKID>
RIAWEST</RZAWE>
HKTID>XYZP</HKTID>
<RENUM>111111111 </RENUM »

<FilaMame NN, Filztiame
</ZFIS_FPAYHS
- <FData>
<Lines>000000000000 D00679</Lines>

<Lines>000000000000 05 420</Lines>
Lines>000000000000 G-/ Lines>
<Lines>000000000000 </ Lines >

<Lines>1000000000000000 </ Linzs >
<Lines>1000000000000000 000000000000</Lines>
<lines>10000000000000 vendor</Lines»
<Lines>2000000000000000 </ Lnes >
<Lnes>200000000000000 </ Lines>
<Lines>000000000000</Lings >
<Lines >000000D0D0000 </ Lines »
<Lines>000000000000-</Lines
<Lines>30000000000000 </Lines =
ines>000000000000<Lines>
<Linec>300000000000000 < Lines:
<Lines>300000000000000 </ Lines>
<Lines>5000000000000</Lines>
<Lines>50000000000000 </Lines >
<Lines>5000000000000 </ Lings>
Lines>000000000000 </ Lines>
<Lines>6000000000000</Lines>
<Lines>000000000000 </Lines:
<Lines>700000000000000 </Lines>
</Fhata>
<(ZFIS_ACHDATA>

Filelocation=} OOOOMXCOEVYYYY\ ZZZZ '\ MU 7 2L oc ation >

<ines>000000000000 abe CO0000000000000 0010452007 MXNAS EIIRMRERRINNN. /.75 MX 000000000000 </Lines>
<Lines>000000000000 X0(X XX0123 abodl vendor MX05</Liness

<Lines>000000000000 00 </Lines =

Fig 3: Sample payload from ECC to PI.

SAP COMMUNITY NETWORK

SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG

5

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

File Structure Creation

The file is generated in Pl by reading the contents of the each node <Lines> in <FData>.

File routing:

The encrypted files generated are routed to file (ftp) channels. The channel has a Target specific encryption
details (like Target public keys, private keys for signing etc as shown below) and FTP details.

File Encryption and digitally signing:

The files are encrypted in appropriate modules using custom adapter modules for PGP encryption. These
modules can be configured for using Target specific Public keys for encryption. Finally the files are signed
using an appropriate private key.

Module Design

Encryption Module Design

The module to encrypt and sign the file using PGP encryption is created using standard Pl module
framework, which accepts a byte stream and encrypts the same generating another byte stream for
subsequent modules. We are using DIDISOFT API for encrypting the files.

For more information about the different DIDIDOFT encryption methods please refer the link mentioned
below in Appendix section.

The property of the module is as follows:

Input:

Pl payload to encrypt as byte stream.

Output:
Encrypted PI payload as byte stream.

Configurable parameter:
1) ReceiverPublicKey (encUserld)
2) SenderPrivateKey (signUserld)
3) PrivateKeyPassword (privateKey password)
4) KeystoreLocation (input KeyStore Location, containing public and private keys)
5) KeystorePassword (keystore passphrase to access keystore)
Other Dependencies:s
1. Keystore having the Public and Private keys.

Functionality:

The module should encrypt the data received using the Public key mentioned in the parameter
<ReceiverPublicKey> the key for which having a similar name should be available in the keystore stored in a
file location on the PI server. The keystore used here is a file with ‘.keystore’ extension. The keystore
contains trusted certificates and combinations of private keys with their corresponding certificates. A
passphrase is required to access information from this keystore.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 6

Post the encryption, the module should digitally sign the encrypted file using the Private Key mentioned in
parameter <SenderPrivateKey> which again should be available with the same name mentioned here in the

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

same keystore as mentioned above.

Code: Encryption code

import

import
import
import
import
import
% import
import
import
import

import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import

f'ﬂ"k
*

*
*
public
FE

L

java.rmi.RemoteException;

javax.ejb
javax.ejb
javax.ejb
javax.ejb
javax.ejb

.EJEException;
.JessionBean:;
LGessionContext;
. TimedChject:

. Timer:

java.io.Byteldrraylutput3tream;
java.io.File;
java.io.Input3tream;

java.rmi.RemoteException;

Javax.ejb.
Javax.ejb.
Javax.ejb.
Javax.ejb.
Javax.ejb.
Javax.xml.
Javax.xml.

EJEException;

ZJessionBean:

ZJessionContext;

TimedChject:

Timer;

parsers.DocumentBuilder:
parsers.bocumentBuilderFactory:

com.didisofrc.pgp. KEeyStore:
cowm, didisofe. pgp.FPGPLib;

coln. Sap .
Lali.

com. S&ap

com. Sap .
com. Sap .

com. S&ap

com. Sap .
com. Sap .

com. S&ap

com. Sap .
com. Sap .

aii.

aii.
aii.

af.
af.
af.
af.
.Engine.
engine.
engine.
.Engine.
engine.
engine.

lib.wp.wodule. ModuleContext;

lib.wp.wodule. ModuleData;

lib.wp.wodule. ModuleException:
service.auditlog. dudit:;
interfaces.messaging.api.Message:;
interfaces.messaging.api.Messagekey:
interfaces.messaging.api.MessagePropertyEey:
interfaces.messaging.api.EMLPavyload:
interfaces.messaging.api.auditlog. buditLogitatus;
interfaces.messaging.api.*:;

hmit_SZrivastavald

class EncryptionBean implements SessionBean, TimedObjiect |

[non-Javvadoc)
* [dzee javax.ejb.dessionBeanfeiblctivate()

private SessionContext myContext:
public void eijblictivate () throws EJEException, FRemoteException |

SAP COMMUNITY NETWORK

SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP

AG

7

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

= /7 (non—-Javadoo)
* [zee Jjavax.eljb.JezsionbBeanffeibPassivate ()
*
= public void ejbPassivate|] throws EJEException, RemoteException {
A4 TODD Auto-generated method stub

= f% (non-Javadoo)
* [zee jawvax.ejb.3essionEeanfiejhRemove ||
*f
= public void ejbRemove()] throws EJEException, RemoteException {
J4 TODO Rhuto-generated mwethod stub

= S* (non-Javadoc)
* [fzee javax.ejb.ZesszionBeanfizsetlessionContext (Javax.ejb.ZessionContext)
uf
= public void setlessionContext (SessionContext context) throws EJEException,
PemoteException 4
myContext = cohnbtext:
fF TODD Auto-generated method stub

= /7 (non—-Javadoo)
* [zee javax.ejb.Timedchjectf#ejbhTimeout (Jjavax.ejh. Timer)
*f
= public void ejbTimeout (Timer argld)] {
A4 TODD Auto-generated method stub

= public void ejbCreate() throws javax.ejb.CreateException {

i
= public ModuleData process (ModuleContext o,
ModuleData inputMocduleData)
throws ModuleException {
Object ob]j = null;
Mes=zage m=sg = null;

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com
© 2011 SAP AG 8

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

fdlomation where kKeystore has b d which contsins pukbli and private along with its full name)
String inpEey3torelocation = [(3tring) wo.getContextDhata ("inpKeyLocation™) !
//Receiver Public key name
String signUserId = (String) moe.getContextData("signlUserId™)
//Sender Private key name
String enclUserId = (String) me.getContextData("enclserIdh): — Conﬁgurabm
f/Private key password paranweters
String privateEeyPassword = (3tring) mo.getlontextDats ("privateBevy™);
//Eeytsore password
String keystorePassword =(5tring) wo.getContextbhata("keystorepassphrase™) !

String filename ="dummy™;

PGPLib pagp = new PGPLib () ;]
boolean armor = false;
bhoolean withIntegritcyCheck = false;

try {
// Retriewves the current principle dats, usually the message , Return cype is Ohject
obj = inputModulelata.getPrincipalDatall:;
ff A Message iz what an application sends or receives when interacting with the Messaging System.

wsg = [(Message) obi:
/¢ MessageKey consists of a message Id string and the MessageDirection
amk = new MessageKeyimsg.getMessageld|() ,msg.getMessagelirectioni());

Ff hudit loy message will appear in MDT of Channel Monitoring

Audit.addinditLogEntry (amk, AuditLogStatus.3UCCE3S, "PGP encryption module called™):

/4 Beturns the main document as XMLPayload.

XMLPavyload xpld = meg.getDocument () ;

InputStream inps = [(Input3tream) xpld.getInputitresami) !

Auditc.addivditLogEntry atk, AuditLogiStatus.3UCCESS, "Message Payload Successfully Read™) !
Eytelrrayiutput3tream baos = new Eytelrrayliutputicream():

Eey3itore kevatore = new Eey3tore(inpEevatorelocation, keystorePassword):
Audit.addiuditLogEntry (stok, AuditLog3tatus.23UCCESS, "Eey3tore Zuccessfully Read™) !

DGR ion et hod
TR

pop.signindEncryptStream|inps, £ilename,
keyStore, PGP Encryption method
signlUserId,
privateKeyPasswvord,
enclUserld,
haos,
armor .
withIntegrityCheck)
Indit.addinditLlogEntry (amk, AuditLogStatus.3UCCESS, "Pavload Successfully Signed and Encrypted™):

/¢ Zet content as byte array into payload
xpld.setContent (haos. toBytelrrayi]):
/¢ Zets the prineciple data that represents usually the message to he processed
Indit.addinditLogEntry (amk, AuditlogStatus.3UCCESS, "Message Successfully updated with Encrypted Message™):
inputModulelata. setPrincipallata (msg) ;
}iricatch (Exception e)
Audit.addiuditLogEntey (amk, AuditLogStatus.IUCCESS,
"AD: Module Exception:™):
ModuleException me = new ModuleException(e):
throw me;
}
return inputModuleData;

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 9

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Receiver Communication Channel Configuration:

% Edit Communication Channel Status |In Process

Communication Channel |CC_FTP_Receiver_Encryption
Party |

Communication Component
Description |Encryptthe message.

Farameters .I Identiﬂersm

Processing Sequence

[a]~
Mumber |M0du|e Mame Type Maodule Key
|:|1 localejhsiEncryption Local Enterprize Bean Encrypt
]z CallSapadapter Local Enterprise Bean i
Module Configuration
[~
Maodule Key Farameter Mame |ParameterVaIue
:lEncrypt inpkeyLocation IuersapI-ISYSIsrcITest.Keystore
:lEncrypt signlserld
:|Encrypt encllserld
:lEncrypt privatelkey private key passward
:lEncrypt keystorepassphrase Keystare password
Appendix
Appendix la
Working of PGP:

OpenPGP is a non-proprietary protocol for encrypting email using public key cryptography. It is based on
PGP as originally developed by Phil Zimmermann. The OpenPGP protocol defines standard formats for
encrypted messages, signatures, and certificates for exchanging public keys.

OpenPGP uses a combination of symmetric and asymmetric encryption to secure messages in an effective
way and is used widely in the industry.

PGP is most securely used with a combination of encryption and digital signature to verify the authenticity of
the intended sender.

More on OpenPGP.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com
© 2011 SAP AG 10

http://www.pgpi.org/doc/pgpintro/

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Encryption:

In this encryption method the plain text is encrypted using symmetric key which is different for each session
and is called the session key. The session key is further encrypted using a public key and bundled with the
encrypted payload as the encrypted message.

However in a PKI kind of environment where there are several holders of the Public key of a particular key
pair any one can spoof another user and send a message which the receiver has no way of identifying,
hence a digital signature is also used for additional security along with the encryption.

Digital Signature:

Digital signatures enable the recipient of information to verify the authenticity of the information's origin, and
also verify that the information is intact. Thus, public key digital signatures provide authentication and data
integrity. A digital signature also provides non-repudiation, which means that it prevents the sender from
claiming that he or she did not actually send the information. The encrypted message signed with the Private
Key of the sender ensures that the authenticity of the message is preserved, considering that the Private Key
is possessed by none other than the Sender.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 11

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Related Content

http://www.didisoft.com/

http://www.pgpi.org/

For more information, visit the SOA Management homepage.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com
© 2011 SAP AG 12

http://www.didisoft.com/
http://www.pgpi.org/
https://www.sdn.sap.com/irj/sdn/soa-management

Using PI to Exchange PGP Encrypted Files in a B2B Scenario

Disclaimer and Liability Notice

This document may discuss sample coding or other information that does not include SAP official interfaces and therefore is not
supported by SAP. Changes made based on this information are not supported and can be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods suggested in this document,
and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of this technical article or
code sample, including any liability resulting from incompatibility between the content within this document and the materials and
services offered by SAP. You agree that you will not hold, or seek to hold, SAP responsible or liable with respect to the content of this

document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com
© 2011 SAP AG 13

