

SAP NetWeaver
How-To Guide

PI Best Practices: Modeling

Applicable Releases:

SAP NetWeaver Process Integration 7.1x

SAP NetWeaver CE 7.1

SAP NetWeaver 7.x

Topic Area:
SOA Middleware

Capability:
SOA Management

Version 1.0

May 2009

© Copyright 2009 SAP AG. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or for any purpose without the

express permission of SAP AG. The information contained

herein may be changed without prior notice.

Some software products marketed by SAP AG and its

distributors contain proprietary software components of

other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are

registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel

Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,

OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP,

Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix,

i5/OS, POWER, POWER5, OpenPower and PowerPC are

trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader

are either trademarks or registered trademarks of Adobe

Systems Incorporated in the United States and/or other

countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered

trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,

WinFrame, VideoFrame, and MultiWin are trademarks or

registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or

registered trademarks of W3C®, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,

Inc., used under license for technology invented and

implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP

NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are

trademarks or registered trademarks of SAP AG in

Germany and in several other countries all over the world.

All other product and service names mentioned are the

trademarks of their respective companies. Data contained

in this document serves informational purposes only.

National product specifications may vary.

These materials are subject to change without notice.

These materials are provided by SAP AG and its affiliated

companies ("SAP Group") for informational purposes only,

without representation or warranty of any kind, and SAP

Group shall not be liable for errors or omissions with

respect to the materials. The only warranties for SAP

Group products and services are those that are set forth in

the express warranty statements accompanying such

products and services, if any. Nothing herein should be

construed as constituting an additional warranty.

These materials are provided “as is” without a warranty of

any kind, either express or implied, including but not

limited to, the implied warranties of merchantability,

fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including

without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials.

SAP does not warrant the accuracy or completeness of the

information, text, graphics, links or other items contained

within these materials. SAP has no control over the

information that you may access through the use of hot

links contained in these materials and does not endorse

your use of third party web pages nor provide any warranty

whatsoever relating to third party web pages.

SAP NetWeaver “How-to” Guides are intended to simplify

the product implementation. While specific product

features and procedures typically are explained in a

practical business context, it is not implied that those

features and procedures are the only approach in solving a

specific business problem using SAP NetWeaver. Should

you wish to receive additional information, clarification or

support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”)

included in this documentation are only examples and are

not intended to be used in a productive system

environment. The Code is only intended better explain and

visualize the syntax and phrasing rules of certain coding.

SAP does not warrant the correctness and completeness of

the Code given herein, and SAP shall not be liable for

errors or damages caused by the usage of the Code, except

if such damages were caused by SAP intentionally or

grossly negligent.

Disclaimer

Some components of this product are based on Java™. Any

code change in these components may cause unpredictable

and severe malfunctions and is therefore expressively

prohibited, as is any decompilation of these components.

Any Java™ Source Code delivered with this product is only

to be used by SAP’s Support Services and may not be

modified or altered in any way.

Document History
Document Version Description

1.00 First official release of this guide

Typographic Conventions
Type Style Description

Example Text Words or characters quoted
from the screen. These
include field names, screen
titles, pushbuttons labels,
menu names, menu paths,
and menu options.

Cross-references to other
documentation

Example text Emphasized words or
phrases in body text, graphic
titles, and table titles

Example text File and directory names and
their paths, messages,
names of variables and
parameters, source text, and
names of installation,
upgrade and database tools.

Example text User entry texts. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example
text>

Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

Icons
Icon Description

 Caution

 Note or Important

 Example

 Recommendation or Tip

Table of Contents

1. Introduction.. 1

2. Background Information... 2

3. Prerequisites .. 2
3.1 Prerequisites... 2
3.2 Supported releases .. 2
3.3 Target Audience ... 2
3.4 Relevant Documentation .. 2

4. Modeling Basics .. 3
4.1 Modeling Approaches... 3
4.2 Define Enterprise Services ... 4
4.3 Modeling Entities .. 5
4.3.1 Business Object .. 5
4.3.2 Process Components.. 6
4.3.3 Deployment Units.. 7
4.3.4 Service Operations ... 8
4.3.5 Service Interfaces ... 10
4.4 Interface Patterns ... 11
4.4.1 Modeling A2A Interactions .. 11
4.4.2 Modeling A2X Services... 14
4.5 Transaction Communication Patterns .. 16

5. Modeling Services in ESR .. 18
5.1 Model Types in ESR... 18
5.1.1 Process Component Models... 18
5.1.2 Integration Scenario Models ... 19
5.1.3 Process Component Interaction Models... 20
5.1.4 Business Object Map .. 22
5.1.5 Integration Scenario Catalogue .. 22

6. Process Integration Scenarios... 23
6.1 Application Components... 23
6.2 Actions .. 23
6.3 Connections.. 23

PI Best Practices: Modeling

1. Introduction
In a Service Oriented Architecture for business applications, you ideally model your application prior to
implementation. The aim of modeling is to model business process flows. The model helps you to
understand and then to implement the process flows or to enhance an implementation that already
exists. SAP NetWeaver provides capabilities for modeling business processes at different levels of
abstraction. Conceptual process modeling sustains large-scale business process analysis projects,
which drive process harmonization and standardization and aim for a high degree of process
excellence. Although this works very well for the stable core of the organization, the need to integrate
with individuals, business partners and third-party systems, and above all to remain innovative,
requires agile methods for supporting the translation of functional business requirements into the
technical specifications of process execution. SAP NetWeaver supports unstructured collaborative
workflows, as well as highly-structured integration processes for service orchestration. At the heart of
Enterprise SOA, the Enterprise Services Repository exposes application core processes using
modeled process components and enterprise services that act as key artifacts to compose new
process innovation at the edge.

The modeling environment in SAP NetWeaver enables distributed business process modeling
throughout the company and offers administration and analysis functions. The Enterprise Services
Builder in the SAP NetWeaver PI offers a modeling environment where you can create various models
in the ES Repository.

A model-driven service development provides the following advantages:

• A process should be part of a model-driven process whereby services of new applications are
adapted in cooperation with other development departments.

• Depending on the modeling, you can work out which design objects are necessary in the ES
Repository for your application.

• Interface patterns in the modeling ensure that services are always defined and named in the
same way.

• Models are good way of documenting the whole process of an application and make it easier to
enhance the software later.

There are two modeling environments in the Enterprise Services Repository:

• Process Component Architecture Modeling: This modeling environment enables SOA
governance and the model-based design of service-enabled business applications. These
models represent a formalized modeling approach as the modeling entities (process
components, enterprise services, service operations, and global data types) are deployed based
on the models in the application platform. Process Component Architecture Modeling supports
process integration modeling using process components in the Enterprise Services Repository
(delivered with SAP Net Weaver Composition Environment 7.1 and SAP NetWeaver Process
Integration 7.1). The embedded modeling methodologies and service-based reference models
help to understand the business semantics of enterprise services in the business process
platform. The process component is the central modeling object and exposes the operations,
service interfaces and business objects used. It references to several model types to combine
the needed information in one place.

With Process Component Architecture Modeling the foundation for process composition is
given. Customers can drill down from graphical high level models to service interfaces and
operations. This empowers transparency of the SOA design. SAP works with this environment
to create models for the applications in the SAP Business Suite. These models are shipped to
customers. Customers can also create their own models in the ES Repository.

May 2009 1

PI Best Practices: Modeling

• Process Integration Scenario Modeling: This modeling environment in the ES Repository was
part of previous SAP NetWeaver PI releases and continues to be supported in the latest
release. It concentrates on the modeling of the exchange of messages between application
components.

2. Background Information
This guide is part of a how-to guide series providing best practices and guidelines for PI and SOA
processes. To increase the level of reusability, SAP works internally with the modeling environment,
including the unification and governance process. SAP delivers the models that are produced by this
process as ESR content to aid the understanding of SAP Applications. This Guide focuses on the
principles of modeling and the various model types and interfaces. SAP recommends that customers
conform to these principles when they create their own models.

3. Prerequisites

3.1 Prerequisites
• Basic understanding of SOA concepts.

• Working knowledge of SAP NetWeaver and SAP Business Suite.

3.2 Supported releases
SAP NetWeaver PI 7.10 and higher

SAP NetWeaver CE 710 >= SP03 with ESR installed

SAP NetWeaver 70 >= SP14

3.3 Target Audience
This document mainly focuses on the Architects, Developers, IT Managers, business process experts
and business analysts who want to learn how to do services modeling and design with Enterprise
Services Repository in SAP NetWeaver.

3.4 Relevant Documentation
Enterprise SOA – Business Object Modeling Guideline – I

Enterprise SOA – Business Object Modeling Guideline - II

Enterprise SOA – Service Operation Design Guideline

Enterprise SOA – Global Data Type (GDT) Design Guideline

Enterprise SOA – Documentation and Naming Guideline

May 2009 2

https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/208f284f-9201-2c10-92b8-868fb19fa46e
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/0061ddfc-3c06-2c10-eca5-de42b3166871
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/901299e0-9201-2c10-9cb1-86c47606a53a
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/50d71e86-9201-2c10-1180-be1cce06bb1f
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d05a91ba-9201-2c10-83b5-9ab989523bcf

PI Best Practices: Modeling

4. Modeling Basics
Modeling capabilities empower enterprise service architects to have a holistic view of the analysis,
design and architecture of service oriented assets. Enterprise service architects can now use service
modeling disciplines to provide strategic and tactical solutions to enterprise problems. Through
modeling, architects focus on design, ensuring reusability, naming conventions, and scalable
interaction and integration scenarios. In the below sections, we will see the various concepts of the
modeling and their best practices.

4.1 Modeling Approaches
Modeling is based on different approaches, each having its pros and cons. The approach used
depends on whether the process modeler’s objective is an overall strategic model or a detailed tactical
model.

• Top-down Approach: The top-down approach focuses on the overall process. It starts by
identifying the business processes and business services used by business users and there by
defining the overall business requirements that give the framework of the business process
model. Then the model that describes how a requirement is fulfilled is split into separate
business processes. Each of these processes has its specific activities and the activities include
specific services and tasks. The goal of the model, however, is to depict a broader view of a
business process fulfilling a given requirement but not to show how a specific activity is
performed. This broader view helps business analysts and managers to see how the overall
process is going, where it needs improvements, and whether there are missing elements in the
general process.

• Bottom-up Approach: In contrast to the top-down approach, the bottom-up approach starts by
defining the activities at the base of the process model. Using them, many different and detailed
business processes are created, to describe how low level business requirements are fulfilled.
The goal of the model is to show how a specific activity is performed to produce a value at the
end of the process. In other words, this approach focuses on the sub-processes first. This
detailed view helps developers and system architects to make the process work. However, a
problem occurs when all these details have to be combined to form the overall model picture, or
when it comes to defining the key requirements that the general model should fulfill.

• Inside-out Approach: Unlike the top-down and bottom-up approaches, which are rather
vertical types of modeling, the inside-out one is a horizontal approach. It consists of defining key
processes in the overall process and then complementing them with other processes. This
approach may be helpful to modelers in different areas if neither of the vertical approaches is
appropriate. Like both other approaches, it also has disadvantages. One of them is that when
using this approach there might be difficulties in defining what the key processes are.

Best Practice Guideline:

The best practice is to follow the Top-down approach because of the following reasons:
...

1. It provides granular functions which can be reused in various processes.

2. It provides the necessary flexibility for building processes on top of a stable platform.

3. This approach can be broken down in a phase model starting with the business requirements
and ending with the implemented composite.

This recommended approach typically involves the following steps:

a. Analyze business requirements

May 2009 3

PI Best Practices: Modeling

b. Specify process information about the business processes and composite applications

c. Think about exception handling.

d. Determine business objects.

e. Describe the user interfaces (interactive steps)

f. Describe the required services.

4.2 Define Enterprise Services
The starting point of an enterprise service implementation is ES Repository. There are two
approaches for defining new enterprise services.

• Inside-out Approach: When you already have functionality needed for your business purposes
implemented in a backend application, you may only need to expose that functionality as web
services, thus enabling your legacy application for SOA development. This approach of service
enabling existing functionality is known as Inside-out development of services. In this approach,
you expose an implementation that is already available as service; you use the service
signature in the system to generate a service description and then publish it externally. By
providing services in this way, you lose the benefits of governance, homogeneity, and so on.

• Outside-in Approach: In this approach, you start with modeling and move towards the
implementation to create Enterprise services. It starts at business level, looking at critical
business processes and modeling them into services that implement those processes. This
approach is suitable if the functionality that is required does not already exist in the system. In
this approach, you first model your service definitions and create design objects in the ES
Repository independent of the language that will be used afterwards to implement the actual
business logic of the operations.

Best Practice Guideline:

SAP’s objective is to provide integrated solutions, which allow the execution of business processes
beyond enterprise boundaries, between SAP and Non-SAP applications and components. The
different applications and components must communicate with each other in a clear and consistent
manner via Enterprise Services. This is ensured by the Outside-in approach when creating service
interface operations. So the best practice is that to use the Outside-in approach when creating the
new services. In this case, the development of the service consists of the following steps:

• Model your service in the Enterprise Service Repository:

 Design the service interface and its operations.

 Design the message type

 Assign the data type to each message type

• Define your service in your development environment:

 Generate the provider proxy for the service interface

 Implement the provider proxy source code

 Create a runtime configuration

• Publish your service in the Service Registry.

May 2009 4

PI Best Practices: Modeling

4.3 Modeling Entities
Service modeling in ES Repository is based on a set of predefined modeling entities and patterns that
ensure that all services are always defined and named in the same way. Following these modeling
principles and patterns provides the homogenous granularity of your services. These modeling entities
are representations of logical business content such as a Purchase Order business object that is
significant to the business. Figure1 illustrates the meta model of an enhanced enterprise service.

Figure 1: Meta model of an Enhanced Enterprise Service

These modeling entities for service definitions and their best practices are discussed in detail below.

4.3.1 Business Object
Business Objects describe the data of a well-defined and outlined business area. Business objects
are defined free of business functionality redundancies and therefore serve as the central point and
basis for modeling and defining services. Business objects represent a set of entities with common
characteristics and common behaviors, which, in turn, represent well-defined business semantics. A
Sales Order is an example of a business object.

Example:

 Figure 2: Business Object

May 2009 5

PI Best Practices: Modeling

Best Practice Guideline:

• To be able to use Business Objects effectively for multiple use cases, you must model them in
such a way that you avoid overlaps with other Business Objects. For example, product data
should not be part of an order, but rather modeled in a separate Business Object. In this way
the Business Object for product data can then be used for other use cases.

• You can also use the Business Object as a template for a whole series of Business Objects. For
example, a business partner can be either a customer or a supplier and the data, with which
either the customer or the supplier is described, is the same. If you consider beforehand a
“business object template” from which the customer and supplier can be projected, then you
avoid an inconsistent definition of the same data.

• Naming Rule:

Syntax: <qualifier>*<object>?

<qualifier>: Term describing a subtype or view of the <object>

<object>: Term for self-contained real world (business) concept

If the <qualifier> is a unique term of its own and already contains the meaning of <object> the
<object> is omitted.

Examples:

 Payment Register (qualifier: Payment, Object term: Register)

 Customer Business Partner (qualifier Customer is unique term of its own, therefore term
Business Partner is omitted)

4.3.2 Process Components
Process components describe self-contained parts of a value chain and group business objects
together. One business object belongs to exactly one process component. Process components
contain data and services for accessing that data and thus form reusable modules of larger
applications. Access to data is modeled by service interfaces and operations. For example, the ERP
process component Sales Order Processing provides the service interface Manage Sales Order In,
among others. From this interface, you can access the service operation Create Sales Order.
Process Component combines related business objects and their A2A, B2B and A2X Service
Operations and Service Interfaces.

May 2009 6

PI Best Practices: Modeling

Example:

Figure 3: Process Component

Characteristics:

• A Process Component is a structuring and modeling construct. It is not a tangible entity in the
development environment.

• A Process Component belongs to exactly one Deployment Unit.

• A Process Component contains one or more Business Objects.

• Larger pieces of a system's functionality (i.e. Scenarios) are assembled by using or reusing
Process Components.

• There are two types of accesses for accessing the process component data:

 Asynchronous: Asynchronous accesses are the means to choose either an A2A or B2B
communication

 Synchronous: This depends mainly on other components of the same application.

More Information:

SAP Help Portal: Process Components

4.3.3 Deployment Units
Deployment Units group process components that interact with each other and that are to be
installed together on a system. Deployment units show the type of interactions needed between the
process components within the deployment unit.

May 2009 7

http://help.sap.com/saphelp_nwpi71/helpdata/en/0c/499f0fc9f048c5a9800e2d736e4e9b/content.htm

PI Best Practices: Modeling

Example:

Figure 4: Deployment Unit

Best Practice Guideline:

• A Deployment Unit is not an entity of physical software shipment and that means it does not
necessarily form a piece of software that is shipped independently from other pieces.

• A Deployment Unit contains one or more Process Components.

• Process Components of a Deployment Unit are completely decoupled from other Deployment
Units via enterprise services (A2A/B2B).

• A Deployment Unit can be replaced by other software components.

• A Deployment Unit can run in multiple instances connected to multiple instances of other
Deployment Units.

• In practice this means mainly that you can run multiple local instances of one Deployment Unit
connected to one central instance of another Deployment Unit.

More Information

SAP Help Portal: Deployment Units

4.3.4 Service Operations
Service Operations are entities that perform specific tasks on a business object, for example,
creating, updating, or deleting a business object. The operation is a specification of a function with a
set of message types assigned as the signature. An operation is assigned to exactly one business
object, whereas a business object can have multiple operations. Depending on the type of access
required to the data or business object, the operations can be asynchronous (for A2A or B2B
communication) or synchronous (for access from other components of the same application). An
example of an operation is “find sales order by order ID.”

May 2009 8

http://help.sap.com/saphelp_nwpi711/helpdata/en/21/23633a8d122102e10000000a11402f/content.htm

PI Best Practices: Modeling

Example:

Figure 5: Service Operation

Best Practice Guideline:

• A Service Operation name is unique within an interface.

• Operation naming rules apply for all categories of service operations (A2X, A2A, and B2B).

• Naming rule for Outbound Service Operation:

Syntax: <Transaction Activity> <Service View> <Action>?

• Naming rule for Inbound Service Operation:

Syntax: <Action> <Service View>

<Transaction Activity>: Activity of Operation such as Request, Confirm of, Notify of, Inform of,
Query, Respond

<Service View>: Service View that defines the operation signature. Omitted if the name of the
service interface covers the semantics of the service view

Syntax: <qualifier>*<object>?<component>?

<qualifier>: Term expressing a semantic restriction of the relevant instances for the
service

<object>: Name of business object the service view is derived from

<component>: Name of sub structure of the object

If the <qualifier> is an established term and covers the semantics of <object>, then
<object> is omitted.

Example of Service View: Purchase Order Delivery Terms

<Action>: Business Function e.g. Create, Update, Cancel, Maintain.

Examples:

Outbound:

Notify of Invoice (with Transaction Activity “Notify of” and Service View “Invoice”)

Inform of Purchase Order Cancel (with Transaction activity “Inform of”, Service View “Purchase
Order” and Action “Cancel”)

Inbound:

Maintain Invoice (with Action “Maintain” and Service View ‘Invoice”)

Create Invoice based on Attachment (with Action “Create”, Service View “Invoice” and Object
“Attachment’)

More Information

SAP Help Portal: Service Operations

May 2009 9

http://help.sap.com/saphelp_nwpi711/helpdata/en/21/23633a8d122102e10000000a11402f/content.htm

PI Best Practices: Modeling

4.3.5 Service Interfaces
Service Interfaces are named groups of operations. A service interface belongs to exactly one
process component, whereas a process component can contain multiple service interfaces. Service
interfaces specify offered (inbound service interfaces) or used (outbound service interfaces)
functionality. When you model the operations and service interfaces, you use predefined patterns to
ensure that the naming and definition of your services are unified. These interface patterns are derived
from the access type needed and cover the majority of use cases. Thus, service interfaces,
operations, and message types are always modeled in the same way.

Example:

Figure 6: Service Interface

Best Practice Guideline:

• A Service Interface name is unique within a Process Component.

• Naming Rule:

Syntax: <Interaction activity><Direction>

<Interaction activity>: Verb or verb phrase in the “-ing” or in substantive form

<Direction>: Fixed term “In” or “Out”

Examples: Query Sales Order In, Request Invoicing Out, Fulfillment In

More Information:

SAP Help Portal: Service Interfaces.

May 2009 10

http://help.sap.com/saphelp_nwpi71/helpdata/en/0c/499f0fc9f048c5a9800e2d736e4e9b/content.htm

PI Best Practices: Modeling

4.4 Interface Patterns
Interface patterns are defined to ensure the behavioral integrity of the Enterprise services. When you
model the Service Operations and Service Interfaces, use predefined patterns to ensure that the
naming and definition of your services are unified. Interface patterns define naming rules for
operations and service interfaces based on the business object and its node structure, grouping rules
for the operations in the service interfaces, naming rules for the message types, and rules for the
message choreography of an enterprise service interaction.

The following Interface Patterns are available:

4.4.1 Modeling A2A Interactions
Interface patterns for A2A interactions model the message exchange between two process
components with the help of asynchronous and synchronous operations. These patterns can also be
used for B2B communication. For example, a “request-confirmation” pattern describes semantics and
naming conventions for an interaction in which a change or update is requested and a confirmation is
expected to be returned.

You need to decide which interface pattern best suits your use case and choose from the following
interface patterns:

Asynchronous Interface Patterns:

Request Confirmation (Bi-directional):

This interface pattern should be used for bi-directional, asynchronous A2A interactions. This pattern is
the most common pattern.

The typical use case for this pattern is the request and update of an order.

Figure 7: Request Confirmation

May 2009 11

PI Best Practices: Modeling

One process component is requesting something from another process component and gets a
confirmation once the requested business action is performed. The confirmation is not just a technical
confirmation that the message has been received.

Notification (One-directional):

This interface pattern should be used for one-directional, asynchronous interactions. For this scenario
the main focus is a goal-oriented notification which the customer is waiting for. Notification means that
process component A has the obligation to notify Process Component B, but is not interested in any
response. The notification message is specific to the receiver.

Naming of the receiving Operation depends on what is happening on the receiving side: Create <BO>;
Change <BO> etc.

A typical use case would be the notifications about the progress of an internet purchase.

Figure 8: Notification

Information (One-directional):

This pattern should be used for A2A pub/sub like scenarios.

The sender does not know at all what the receiver is doing with the message. This means the sender
does not know, if the receiver is actually interested in the event of the given BO_1 instance. Therefore
there is a high risk of sending a lot of messages that are actually ignored at the receiver. This pattern
should only be used if there is no other choice.

Since the sender does not know the receiver, this interface has to be defined like an A2X interface.
You simply group all events of one Business Object in one Interface. There is no specific interaction
like in other A2A interfaces since you do not know the receiver.

May 2009 12

PI Best Practices: Modeling

Figure 9: Information

Best Practice Guideline:

Criteria for using this pattern are:

• There are already multiple receivers for the same event (which do actually different things with
the same information).

• The sending system is often non-SAP software, which is not capable of evaluating whether the
receiver actually is interested in the message or not.

• Evaluation whether the message is relevant would only be possible, if (master) data is
replicated to the sender, which the sender does not need otherwise.

• The sender does not care about the receiver and has also no obligation to inform the receiver
(notification pattern).

• Do not use this interface pattern to distribute master data.

Synchronous Interface Patterns:
• Query Business Object in A2A Communication:

This interface pattern should be used for synchronous communication to read data from a
business object by means of a selection criteria and not using a known ID.

• Read Business Object in A2A Communication:

This interface pattern should be used for synchronous communication to read data from a
business object for which an ID is known.

More Information:

• SAP Help Portal: Synchronous Interface Patterns for A2A Interactions

Best Practice Guideline:

• Since these two interface pattern works with synchronous communication, they must not be
used to update transaction data or to distribute master data.

• They should be restricted to read-only access.

May 2009 13

http://help.sap.com/saphelp_nwpi71/helpdata/en/8c/5ff22a5f584772a088d460719e20a7/frameset.htm

PI Best Practices: Modeling

4.4.2 Modeling A2X Services
A2X services are used to model synchronous access to data from UI components or from other
clients.

You need to decide which interface pattern best suits your use case and choose from the following
interface patterns. These interface patterns ensure harmonized service interfaces across all the
business objects.

Manage Business Process Object:
This interface pattern should be used for modeling application accesses that do not need to be
persisted. It describes the synchronous access to the BO from a UI component or from other clients. It
defines rules for naming Enterprise Service Operations and Service Interfaces, rules for grouping
enterprise service operations into service interfaces, rules for naming message interfaces, and rules
for the message choreography of an Enterprise Service interaction.

The Figure shows a “Manage BO Pattern” that is to be used for the interaction with a particular
Business Object. It gives the information on how to define the interface, operations, and message
types used.

Figure 10: Manage Business Process Object

May 2009 14

PI Best Practices: Modeling

Best Practice Guideline:

Read <BO>

• The read operation should be implemented in a way that it can handle a list of IDs as input.

• There should be no separate operations for reading different parts of the object except in the
case where object mixes the master data parts (in header) and transactional data parts.

• Naming example:

 Operation: Read Purchase Order

 Message Type Request: Purchase Order by ID Query

 Message Type Response: Purchase Order by ID Response

Create <BO>

• Naming example:

 Operation: Create Purchase Order

 Message Type Request: Purchase Order Create Request

 Message Type Confirmation: Purchase Order Create Confirmation

Change <BO>

• Change operation follows the “Last one Wins” strategy. It applies changes to the data ignoring if
changes were applied to the same data since read by the calling consumer.

• Use this very carefully and it is recommended to favor Update operation instead of change.

• Naming example:

 Operation: Change Purchase Request

 Message Type Request: Purchase Request Change Request

 Message Type Confirmation: Purchase Request Change Confirmation

Update <BO>

• Update operation follows “First One Wins” Strategy and changes data only if no changes were
occurred since the data was last read. It checks for concurrent updates and sends an error
message if someone else has changed the message.

• You should implement update operations in cases with high probability of concurrent updates,
or in cases where the “last one wins” of change operation is not acceptable.

• Naming example:

 Operation: Update Sales Order

 Message Type Request: SalesOrderERPUpdateRequest_sync

 Message Type Confirmation: SalesOrderERPUpdateConfirmation_sync

Check <BO>

• Check operations should be set up independently from the change, create or cancel operation.

• The check operation should also include the check if the object is locked or not.

• In case you need different check operations for create and change, it is allowed to create
different ones.

 Operation: Check <BO> Creation or Check <BO> Change

May 2009 15

PI Best Practices: Modeling

 Message Type: <BO> Check Creation Query or <BO> Check Change Query

 Naming Examples:

 Operation: Check Sales Order Creation

 Message Type Query: SalesOrderERPCreateCheckQuery_sync

 Message Type Response: SalesOrderERPCreateCheckResponse_sync

Manage Master Data Object:
This interface pattern is used for master data object type business objects (BOs). To change or read
data, you do not normally access the master data objects with a large operation.

More Information:

• SAP Help Portal: Manage Master Data Object

Best Practice Guideline:

SAP recommends that you group the master data into meaningful categories and model an operation
for each group.

Query Business Object:
This interface pattern describes the search for data records by means of selection criteria that are
handed over to the operation. It is read-only access. Divide the operation up according to the purpose
of the search and then by which selection criteria those are to be used.

More Information:

• SAP Help Portal: Query Business Object

Business Object Action:
This interface pattern is used to perform actions that operate on business object (BO) data. There are
typically only a few parameters contained in the the request so that the action can be performed.

More Information:

• SAP Help Portal: Business Object Action

4.5 Transaction Communication Patterns
Transaction Communication Party (TCP) describes an atomic dialog between a Sender and Receiver.
Typical TCPs used by Enterprise Services are:

• Query/Response: means that messages are sent back and forth but that the state maintained
by the service does not change.

• Request/Confirmation: means that messages are sent back and forth and that the state
maintained by the service may change.

• Notification: means that a service sends a message that contains a notification of an event.

• Information: means that a service sends a message containing other information.

May 2009 16

http://help.sap.com/saphelp_nwpi71/helpdata/en/8c/5ff22a5f584772a088d460719e20a7/frameset.htm
http://help.sap.com/saphelp_nwpi71/helpdata/en/2b/2400cb9ed449d7b47e87c26637fc87/content.htm
http://help.sap.com/saphelp_nwpi71/helpdata/en/1c/38054b89824e69b901859a1a88d752/content.htm

PI Best Practices: Modeling

Figure 11: Transaction communication Pattern

Best Practice Guideline:

The selection of a TCP should take place based on the classification of patterns. The communication
pattern to be used should be derived from the business perspective, depending on the expectation of
the sender of a message and the obligation of the recipient to react to it. The following diagram
illustrates the decision tree for this:

Figure 12: Decision Tree

May 2009 17

PI Best Practices: Modeling

5. Modeling Services in ESR
Modeling focuses on design and ensures reusability, naming conventions, and scalable interactions
and integration scenarios. The Enterprise Services Builder in the ESR is used for defining and
managing the objects necessary for implementing an Enterprise Service. You first need to create
models in order to determine the essential business objects such as data types, message types, and
service interfaces necessary for your application in the ESR. These objects are then used to generate
and implement your services.

Best Practice Guideline:

It is recommended to follow the below when modeling the services in ESR:

• Import a Software Component Version (SWCV) from the SLD into the ESR and define a
namespace for it. All objects required will be created under the namespace.

• Create a new Process Component Model (SAP ProComp Model).

• Add the required business objects to the model.

• Identify and model the operations and service interfaces that will provide the process
components with access to the data. When modeling the services, use the predefined patterns.

• To access the data of other process components, use Process Component Interaction model
(SAP Procomp Interaction model). Identify and model the required operations and service
interfaces.

• Use the Interaction Scenario model to show interactions with other model.

• Active all your changes and release the service interfaces.

5.1 Model Types in ESR
According to the harmonized Enterprise Service model, there are five model types namely Process
Component model, Integration Scenario model, Process Component Interaction model, Business
Object map, and integration scenario catalogue.

5.1.1 Process Component Models
The Process Component models in ESR enable SOA governance and help to understand the
business semantics of enterprise services in the business process platform. They provide the details
of the internal structure of a process component. It is a view on the Service Interfaces and Service
Operations provided by a Business Object. You use one or multiple Business Objects to model the
data. Service operations (A2A, B2B, and A2X) and service interfaces are defined in the Process
Component models. For this reason, they are also called the Provider Views. Process Components
models show all possible interactions with other Process Components.

May 2009 18

PI Best Practices: Modeling

Figure 13: Process Component model

Best Practice Guideline:

• In the process component model, the process component should be modeled from the provider
view.

• To keep the model transparent, model synchronous operations from left to right and
asynchronous operations from top to bottom.

• SAP recommends that you use the interface patterns for synchronous access to BO data. You
need to select from the following interface patterns for modeling the data:

 Manage Business Process Object

 Manage Master Data Object

 Query Business Data Object

 Business Object Action

 Note

These interface patterns are discussed above in Section 4.4.2.

5.1.2 Integration Scenario Models
Integration Scenario models describe which process components belongs to which deployment units
and how the process components interact with each other in an end-to-end scenario. The integration
scenario models give a better understanding of the whole process. Communication between Process
Components is reflected and characterized through connection types.

May 2009 19

PI Best Practices: Modeling

Figure 14: Integration Scenario Model

Best Practice Guideline:

The following Process Components types can be used in this model:

• Process Component (PC that you implement)

• Process Component at Business Partner (PC at a Business Partner is connected to PC in your
business via B2B communication)

• Third-party Process Component (A third party PC is connected to PC in your business via A2A
communication)

You can use the following four types of interactions between the process components that show how
two process components exchange between each other:

• Enterprise service interaction (implemented outbound from service interfaces in the ESR)

• Web service interaction (represents synchronous point-point interaction)

• Direct interaction (interaction is done via method calls or function module calls. Example: RFC
call)

• Other interaction (other interactions between deployment units, different from web service or
enterprise service interactions)

5.1.3 Process Component Interaction Models
Process Component Interaction Models represent an interaction with a specific business goal between
two Process Components. The model shows all the involved Business Objects, service interfaces,
operations, message types. Process Component Interaction Model can only be used for an enterprise

May 2009 20

PI Best Practices: Modeling

service interaction and there can be for none, one, or multiple process component interaction models
assigned to one enterprise service interaction.

Figure 15: Process Component Interaction Model

Best Practice Guideline:

In designing this model, you should use the following message types for communication:

• One message type for an asynchronous operation without mapping.

• Two message types for a synchronous operation without mapping (one for the request and one
for the response).

• If the message type structures from the sending and receiving process components do not
agree, the message types must be mapped on to each other using a mapping. You therefore
need an outbound and a target message type, rather than just a message type.

SAP recommends that you represent the sequence of events from top to bottom.

The following interface patterns are recommended to be used in this model:

• Asynchronous Interface Patterns:

 Request/confirmation

 Notification

 Information

• Synchronous Interface Patterns:

 Query Business Object in A2A communication

 Read Business Object in A2A communication

 Note

These interface patterns are discussed above in Section 4.4.1.

May 2009 21

PI Best Practices: Modeling

5.1.4 Business Object Map
Business object maps (SAP entity map), or business object template maps, aggregate business
objects or business object templates in a model for overview purposes. A business object map is an
entity map, which is a structured directory of all entities of the main entity types. An entity map for a
given application is a structured directory of all deployment units, process components, and business
objects in the application. Business object maps are defined for all major applications and are shipped
as ESR content.

The Business Object map is shipped as ESR Content.

Figure 16: Business Object Map

5.1.5 Integration Scenario Catalogue
Integration scenario catalogs (SAP Scenario Catalogue) group and structure all the integration
scenarios of a solution and thereby represent the business starting point for process modeling. The
contained scenarios and their variants are clustered using integration scenario groups. You can
navigate from a catalog to all contained elements.

May 2009 22

PI Best Practices: Modeling

6. Process Integration Scenarios
The process integration scenarios provide an overview of the process flow for a collaborative scenario.
These scenarios bind together all relevant objects defined in the Enterprise Services Repository and
can be used in the Integration Directory for configuring an A2A or B2B scenario. The process
integration scenario is the umbrella that brings together the objects required for the execution of a
specific scenario and that identifies their interdependencies by modeling the process flow.

The Process Integration Scenario consists of:

• Application Components

• Actions

• Operations

• Connections

6.1 Application Components
Each process integration scenario contains two or more application components. An application
component typically represents a business partner or a component within the business partner
landscape.

6.2 Actions
An action is an object in SAP NetWeaver PI that represents a function within an application
component that is not subdivided further. Actions divide up the process flow of an integration scenario.
Actions in different application components can exchange messages with each other within an
integration scenario.

6.3 Connections
A connection is a link between two actions within a Process Integration scenario.

Connections are of two types:

• Sequence

Sequence represents the sequence of two actions within the same application component. A
sequence is required for portraying the Process Integration Scenario process, however it
contains no additional information.

• Cross-Component Connection

A cross-component connection connects actions from different application components with
each other. These actions exchange messages with each other in a Process Integration
scenario. A cross-component connection defines the interfaces and mappings used.

Cross-component connections differentiate between synchronous and asynchronous
communication

May 2009 23

http://help.sap.com/saphelp_nwpi71/helpdata/en/a8/de5e3c11a8694d8c32c9efcaca9d2a/content.htm
http://help.sap.com/saphelp_nwpi71/helpdata/en/68/88a440df800160e10000000a1550b0/content.htm
http://help.sap.com/saphelp_nwpi71/helpdata/en/ec/21ee117a909f44a8b69794b9ed6221/content.htm

PI Best Practices: Modeling

May 2009 24

Best Practice Guideline:

• A Process Integration scenario models the complete exchange of messages for a collaborative
process and provides an overview of the process flow. The advantages of defining Process
Integration Scenarios in the Enterprise Services Builder (design tool) are as follows:

 The Process Integration Scenario provides you with an overview of the process and the
process flow.

 The Process Integration scenario combines all objects that are involved in this process:
interface objects, mapping objects, executable integration processes from the Enterprise
Services Repository, and product versions from the System Landscape Directory.

You can access all of these objects from the Process Integration Scenario.

 The Process Integration Scenario contains all design time information about the process
that is required for its configuration. If you have defined a Process Integration scenario,
you can use this as a template for configuration. The relevant objects are predominantly
created automatically. For more complex collaborative processes the use of Process
Integration scenarios enables you to clearly design the configuration.

...

www.sdn.sap.com/irj/sdn/howtoguides

	1. Introduction
	2. Background Information
	3. Prerequisites
	3.1 Prerequisites
	3.2 Supported releases
	3.3 Target Audience
	3.4 Relevant Documentation

	4. Modeling Basics
	4.1 Modeling Approaches
	Best Practice Guideline:

	4.2 Define Enterprise Services
	Best Practice Guideline:

	4.3 Modeling Entities
	4.3.1 Business Object
	Best Practice Guideline:

	4.3.2 Process Components
	Characteristics:

	4.3.3 Deployment Units
	Best Practice Guideline:

	4.3.4 Service Operations
	Best Practice Guideline:

	4.3.5 Service Interfaces
	Best Practice Guideline:

	4.4 Interface Patterns
	4.4.1 Modeling A2A Interactions
	Asynchronous Interface Patterns:
	Request Confirmation (Bi-directional):
	Notification (One-directional):
	Information (One-directional):
	Best Practice Guideline:
	Synchronous Interface Patterns:
	Best Practice Guideline:

	4.4.2 Modeling A2X Services
	Manage Business Process Object:
	Best Practice Guideline:
	Manage Master Data Object:
	Best Practice Guideline:

	Query Business Object:
	Business Object Action:

	4.5 Transaction Communication Patterns
	Best Practice Guideline:

	5. Modeling Services in ESR
	Best Practice Guideline:
	5.1 Model Types in ESR
	5.1.1 Process Component Models
	Best Practice Guideline:

	5.1.2 Integration Scenario Models
	Best Practice Guideline:

	5.1.3 Process Component Interaction Models
	Best Practice Guideline:

	5.1.4 Business Object Map
	5.1.5 Integration Scenario Catalogue

	6. Process Integration Scenarios
	6.1 Application Components
	6.2 Actions
	6.3 Connections
	Best Practice Guideline:

