

 Active Global Support North America

How-to-Guide:
Reverse Proxy and Load Balancing for SAP
Mobile Platform 3.X

 2

Document History:

Document Version Authored By Description

1.0 Kiran Kola Architect Engineer

Document Version Reviewer Description

1.0 Ali Chalhoub Global Architect Support Engineer

www.sap.com

Table of Contents

1. Business Scenarios 4

2. Prerequisites 4

3.0 SAP Mobile Platform Configuration 5

3.1 OData registration on SMP Platform 6

3.2 Testing backend OData Services through SMP Platform 14

3.3 SMP jvmRoute Configuration 21

4.0 SMP 3.0 Architecture and Apache Server Setup 22

4.1 Apache HTTP Server Installation 23

4.2 Communication protocol scenarios 25

4.3 Monitoring settings for Apache Server 56

5.0 Exposing SMP OData Services via Relay server 59

5.1 Registration with Sybase Hosted relay Server 60

5.2 RSOE setup in SMP platform 62

6.0 NGINX as the reverse proxy and Load balancer 66

6.1 Install Nginx 67

6.2 Nginx as Reverse Proxy and Load balancer with HTTP communication 69

6.3 Verifying the request is going through Nginx 71

6.3 Nginx as Reverse Proxy and Load balancer with HTTPS communication 72

 4

1. BUSINESS SCENARIOS

SAP supports following third-party reverse proxy solutions:

¶ Apache reverse proxy for Native and Hybrid applications

¶ Nginx for Agentry applications

When adding a reverse proxy, determine the mobile application types you need to support.

Application Type Reverse Proxy

Native Apache

Hybrid Apache

Agentry Nginx

MBO RelayServer

Apache Server:

To support HTTP based clients that are designed to consume SAP Mobile Platform Server services, customers
can optionally implement an Apache Reverse Proxy instead of a Relay Server in their production environment.
When a customer use Apache HTTP Server as the Reverse Proxy and Load Balancer solution for SAP Mobile
Platform 3.0, itôs necessary to set up an environment containing all the needed resources. In this guide, we will
illustrate how to set up an Apache server containing all the needed components for testing the load balancing,
failover, http, one-way http and two-way https communication scenarios.

Relay Server:

Relay is typically used for MBO based applications but it can also be used for OData applications. Section 5 will
illustrate on how to expose SAP Mobile Platform OData services using Hosted Relay Server.

Nginx:

Nginx (pronounced "engine-x") is an open source reverse proxy server for HTTP, HTTPS, WebSockets protocols
and as well as a load balancer. NGINX supports WebSockets by allowing a tunnel to be setup between a client
and backend servers. Nginx is typically used for SAP Agentry based applications.

Difference between Apache and Nginx servers can be found in the following link:
http://www.wikivs.com/wiki/Apache_vs_nginx

2. PREREQUISITES

All the server names used in this documentation are used to demonstrate end-to-end technical scenarios and for
mockup purposes only. Following are the prerequisites and software details:
SMP

To test the load balancing scenarios, we installed 2 Node SMP Cluster with ASE as the Database Node.

¶ SMP version: SMP 3. 0, SP 4

¶ Database Node: sp-tivm74.wdf.sap.corp (We tested all the scenarios on ASE and HANA Database)

¶ SMP Cluster Node 1: pvs9096.wdf.sap.corp

¶ SMP Cluster Node 2: pvs9097.wdf.sap.corp

 5

Apache server

A typical usage of reverse proxy is to provide mobile user access to SMP servers that are behind the
corporate firewall so Apache HTTP server is installed in a DMZ area. In addition, Apache HTTP server is
used to balance load among several SMP back-end servers.

¶ Apache Version: Version 2.4

¶ Apache Server Node: ushplvm1383.phl.sap.corp

¶ Notepad++ http://notepad-plus-plus.org/

Relay server

¶ Registration with Sybase Hosted Relay Server

Nginx

¶ Nginx Version: nginx-1.7.2

¶ Nginx Server Node: ushplvm1384.phl.sap.corp

¶ Notepad++ http://notepad-plus-plus.org/

RestClient

OData Testing Tools: Sample SAP OData Gateway service is configured on the SMP Server. To test the OData
services, any of the following REST Client tool can be used:

¶ Chrome Postman

¶ Firefox RESTClient

¶ SOAPUI Tool

Assumptions:

¶ For SSL configuration, self-signed certificates are not used in below examples; we used internal SAP CA
for signing all the servers and client certificates

¶ SMP 3.0 Cluster Installation is done prior to this setup

¶ Relay server installation is done prior to this setup (if hosted solution is not in scope)

3.0 SAP MOBILE PLATFORM CONFIGURATION

SMP Platform cluster installation is not covered in this document. Please refer to installation docs for How
to install and configure SMP 3.0 in a cluster environment.

http://help.sap.com/smp303svr

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://help.sap.com/smp303svr

 6

Registering an OData
Application

3.1 OData Registration on SMP Platform

This section we will cover OData registration on SMP and testing OData with Rest Client in following steps:

a) Login to SMP Management Cockpit
b) Provide application details
c) Provide OData details
d) Provide Authentication Profile details
e) Provide Authentication Provider details

Configuring the oData application

1. Open web browser (i.e Chrome or any web browser that supports HTML5)
2. Type the cockpit URL address (i.e https://<host-name>:8083/Admin)
3. Enter the user ID password. By default:

a. userID: smpAdmin
b. password:s3pAdmin (Note: If you change the password during installation, type the new

password)

4. Click on Login to log into the cockpit
5. Once logged in successfully, click on APPLICATIONS tab
6. Click on the New button to create a new application for our OData back-end Endpoint as shown below:

7. Once you click on the New button, you should see the following screen below, fill up with the information
that is shown on the screen

 7

8. Click Save when you are done
9. Now we should see the following screen

10. Provide the gateway Endpoint information under BACK END Tab

a. We need the URL of the Endpoint
b. If the Endpoint requires an authentication, select Allow anonymous access and type and provide

user name and password for backend authentication
c. Check rewrite

NOTE: Test and validate backend OData connections prior to this setup.

 8

11. The BACK END tab information should look like the screen below

12. Click on AUTHENTICATION tab

 9

13. Under SECURITY PROFILE, enter the name of the security profile, in our example we are using
ñhttpSecò for our security profile name

14. Click on the New button to associate an authentication provider for our security profile

 10

15. We should see the authentication provider screen

16. From the Authentication provider, click on the dropdown list and select ñHTTP/HTTPS Authenticationò

 11

17. We should see the following screen

18. All you have to do here is provider the URL address which is the same as the Endpoint that we used

19. Once you are done, click the save button
20. You should see the following success message indicating everything is OK

 12

21. Click Save again to save now the new security profile as shown below

22. You will be asked to Confirm the update, click Yes

23. You should see the following:

 13

24. To make sure if our Endpoint is working correctly, select the row as shown below by clicking on it:

25. Now click on the Ping button as shown below:

26. If the Endpoint is reachable, you will get the following message below:

 14

Testing OData
Application Endpoint

3.2 Testing backend OData Services through SMP Platform

For this test as we mentioned in requirements section, we are using POSTMAN Rest Client to onboard the
application, to do the onboarding, do the following:

1. Invoke POSTMAN RESTClient, you should see something similar to the screen below, if this is a fresh

installation of POSTMAN RESTClient

2. The first thing we need to do is provide the URL of any one of the SMP cluster nodes, the URL should look

like this
http://<host-name>:8080/odata/applications/latest/odata.flight/Connections

3. Change the operation method to POST as shown below

4. Now we need to set the Content-Type = application/atom+xml;charset=utf-8 , to do that, do the following:
a. Click on Headers as shown below:

 15

b. You should see the following:

c. In the header field type Content-Type as shown below:

d. For the Content-Type value, type application/atom+xml;charset=utf-8, now you should see
something like the screen below:

5. Provide OData credentials:

a. Click on the Basic Auth, you should see something like the screen below:

 16

b. Type the OData End-point user ID and password:

c. Now click Refresh headers, you should see the following:

6. If you want to associate a custom ID when you register your application, you can add the header X-SMP-
APPCID to the header section and provide any value. Or you can leave it blank and SMP will associate a
GUID with it. For this test, we are providing a custom ID. Next for registration purpose, provide some value
X-SMP-APPCID = KOLAIDS, to do that, do the following:

a. Click on the Normal Tab

 17

7. In the header section as shown below, type the Header, X-SMP-APPCID as shown below:

8. Now we need to provide a body, click on raw tab as shown below:

9. In the body section, paste the following XML code below:

<?xml version="1.0" encoding="UTF-8"?>
<entry xml:base="http://pvs9096.wdf.sap.corp:8080/odata/applications/latest/odata.flight/Connections"
xmlns="http://www.w3.org/2005/Atom"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">
<content type="application/xml">
<m:properties>
<d:DeviceType>Windows</d:DeviceType>
</m:properties>
</content>
</entry>

10. You should see something like that:

 18

NOTE: the Authorization Basic value may vary since the user id and password it may not be the same as our
credential information.

11. Test the service Click Send button, if everything goes well, you should see the following below which

indicates the application is successfully registered on SMP server.

Similarly, now you can test GET operation with following inputs as shown in the below screen:

 19

URL: http://pvs9096.wdf.sap.corp:8080/odata.flight/
Operation = GET
Authorization = Basic d2YtbW0tNDp3ZWxjb21l
X-SMP-APPCID = KOLAIDS

Click Send button. 200 OK status is displayed with XML output as shown below.

To validate the registration completion on SMP, login into SAP Management cockpit and verify registration
count.

Click Registrations, you should see registration ID with unknown type (browser).

http://pvs9096.wdf.sap.corp:8080/odata.flight/

 20

With this we successfully registered and tested backend OData on SMP. Next we will configure jvmRoute
configuration on SMP.

 21

JVMRoute Configuration

3.3 SMP jvmRoute Configuration

Each SMP instance of the cluster gets an individual name which is added at the end of the session id. When the

load balancer sees a session id, it finds the name of the SMP instance and sends the request via the correct

member worker. For this to work you must set the name of the SMP instances as the value of the jvmRoute

attribute in the engine element of each SMP default-server.xml. The name needs to be equal to the name of the

corresponding load balancer member. Following are three main steps:

1. Edit default-server.xml of SMP server nodes of the following

Location: <dir>\config_master\org.eclipse.gemini.web.tomcat\default-server.xml

2. Specify the jvmRoute as a unique string for the node as shown below:

For pvs9096, jvmRoute=SMPServerNode96 (make sure there is no space between ñ=ò)

For pvs9097, jvmRoute=SMPServerNode97

3. Restart the SMP server

Next section we will focus on how to use apache as a reverse proxy and load balancer solution for SMP 3.0

Platform.

 22

4.0 SMP 3.0 ARCHITECTURE AND APACHE SERVER SETUP

Below diagram is the sample architecture for SMP cluster and apache server setup. In the following, we will
provide configuration steps to setup plain HTTP, one-way HTTPs and mutual authentication.

NOTE: In general, Proxy and Load Balancer solutions are typically adopted in the production environment setup

so for this implementation we considered Apache with SMP cluster environment and ignored scenarios for single

SMP node.

 23

Apache Server Installation

4.1 Apache HTTP Server Installation

In this section, Apache server installation and configuration is illustrated in the following steps:

1. Download Apache
2. Configure Apache Server

1. Use the link to download the Apache HTTP Server: http://www.apachelounge.com/download/

Version used: httpd-2.4.9-win64-VC11

Prerequisite:
Download and install the Windows C++ 2012 runtime from Microsoft.com
We installed Apache in C:\\Apache24, so extracted the ZIP file to the root of the C: drive. Apache can be
installed anywhere on your system, but you will need to change the configuration file paths accordingly

Within the folder, you will see following folder structure:

http://www.apachelounge.com/download/
http://www.microsoft.com/downloads/details.aspx?FamilyID=200b2fd9-ae1a-4a14-984d-389c36f85647&DisplayLang=en

 24

2. Configure Apache:

a) cd \apache24\bin

Note: httpd.exe -k install -n "Apache2.4" (this installs apache as a service)

Port Conflict scenario: Because Apache cannot share the same port with another TCP/IP application, you may

need to stop, uninstall or reconfigure certain other services before running Apache (for example IIS). In default,

server listens on port 80 and you can change the port in httpd.conf file.

b) Edit httpd.conf file using Notepad++, located under <Drive>\Apache24\conf\
c) To activate, uncomment following modules in httpd.conf file:

Typical proxy server will need to enable several modules. Those relevant for proxying and load balancing are as
follows:

¶ LoadModule proxy_module modules/mod_proxy.so
o The core module deals with proxy infrastructure and configuration and managing a proxy

request.

¶ LoadModule proxy_http_module modules/mod_proxy_http.so
o This module handles fetching documents with HTTP and HTTPS.

¶ LoadModule proxy_connect_module modules/mod_proxy_connect.so
o This handles the CONNECT method for secure (SSL) tunneling.

¶ LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
o mod_proxy_balancer implements clustering and load-balancing over multiple backends.

¶ LoadModule slotmem_shm_module modules/mod_slotmem_shm.so
o memory provider which provides for creation and access to a shared memory segment

¶ LoadModule proxy_html_module modules/mod_proxy_html.so
o This rewrites HTML links into a proxy's address space.

¶ LoadModule headers_module modules/mod_headers.so
o This modifies HTTP requests and response headers.

¶ LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so

o Distribute the requests among the various workers

¶ LoadModule ssl_module modules/mod_ssl.so

o This module provides SSL v2/v3 and TLS v1 support for the Apache HTTP Server

 25

Communication Scenarios

4.2 Communication protocol scenarios
In this section, following protocol communication scenarios for Apache Server are covered:

1. HTTP
2. one-way HTTPS
3. two-way HTTPS

Scenario 1: In this section, Apache as reverse proxy and simple load balancing configuration using HTTP

communication is covered:

1. Configure httpd.config for plain HTTP communication

2. Restart Apache Server
3. Verify communication
4. Testing SMP OData using Apache Server URL

Proxy can be easily achieved by simply writing the below two rules in your httpd.conf file.

¶ Proxypass: This directive asks the apache server to fetch data from SMP Nodes

¶ ProxyPassReverse: This directive rewrites the original URL when the traffic is send back.

In this use case we have two SMP server nodes pvs9096 and pvs9097 that both listen on port 8080. The

apache load balancer listens on port 80 by default. This sets up a load balance cluster called

balancer://smpcluster that is bound to the two SMP nodes. The stickysession is the session affinity cookie to be

used.

1. In the following HTTP examples, http://usphlvm1383.phl.sap.corp:80/ is mapped to following SMP Nodes on

port 8080:

¶ pvs9096.wdf.sap.corp:8080

¶ pvs9097.wdf.sap.corp:8080

On each SMP node we add the unique node name that was set up in the default-server.xml file in SMP

configuration (as described in section 3.4). This configuration is necessary so that session affinity works

correctly. We can achieve load balancing using two methods: 1) SMP session ID or with 2) Apache Headers;

you can choose method based on the type of usage.

Method 1:httpd.conf template using SMP Session ID

Listen 80
<VirtualHost *:80>
 ProxyPreserveHost On
 ServerName usphlvm1383.phl.sap.corp
 <Proxy balancer://smpcluster>
 BalancerMember http://pvs9096.wdf.sap.corp:8080 route=SMPServerNode96
 BalancerMember http://pvs9097.wdf.sap.corp:8080 route=SMPServerNode97
 ProxySet stickysession=X-SMP-SESSID

 26

 ProxySet lbmethod=byrequests
</Proxy>
ProxyPass / balancer://smpcluster/
ProxyPassReverse / balancer://smpcluster/
ErrorLog "C:/Apache24/logs/error.log"
LogFormat "%h %l %u %t \"%r\" %>s %b duration:%T/%D balancer:%{BALANCER_WORKER_NAME}e
Changed:%{BALANCER_ROUTE_CHANGED}e Sticky:%{BALANCER_SESSION_STICKY}e"
TransferLog /Apache24/logs/enhancedlog.log
</VirtualHost>

Method 2: httpd.conf template using Apache Headers

Listen 80
<VirtualHost *:80>
 ProxyPreserveHost On
 ServerName usphlvm1383.phl.sap.corp
Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e; path=/"
env=BALANCER_ROUTE_CHANGED
 <Proxy balancer://smpcluster>
 BalancerMember http://pvs9096.wdf.sap.corp:8080 route=SMPServerNode96
 BalancerMember http://pvs9097.wdf.sap.corp:8080 route=SMPServerNode97
 ProxySet stickysession=ROUTEID
 ProxySet lbmethod=byrequests
</Proxy>
ProxyPass / balancer://smpcluster/
ProxyPassReverse / balancer://smpcluster/
ErrorLog "C:/Apache24/logs/error.log"
LogFormat "%h %l %u %t \"%r\" %>s %b duration:%T/%D balancer:%{BALANCER_WORKER_NAME}e
Changed:%{BALANCER_ROUTE_CHANGED}e Sticky:%{BALANCER_SESSION_STICKY}e"
TransferLog /Apache24/logs/enhancedlog.log
</VirtualHost>

NOTE: mod_headers module is required to set headers.
Refer http://httpd.apache.org/docs/2.2/mod/mod_headers.html.

2. Restart Apache Server

3. Verify http communication

Validate the configuration by opening a browser and testing these URLs:

o http://usphlvm1383.phl.sap.corp:80

URL should return a page with this information:

http://httpd.apache.org/docs/2.2/mod/mod_headers.html

 27

4. Testing POST operation via Apache with HTTP. Port 80 is the default http port.

1. Invoke POSTMAN RESTClient,

2. Provide the Apache host name in the URL with http port (80), the URL should look like this

http://<apach-server-host>:80/odata/applications/latest/odata.flight/Connections

3. Change the operation method to POST as shown below

4. Now we need to set the Content-Type = application/atom+xml;charset=utf-8 , to do that, do the

following:
a. Click on Headers as shown below:

b. In the header field type Content-Type as shown below:

c. For the Content-Type value, type application/atom+xml;charset=utf-8, now you should see

something like the screen below:

5. Provide OData credentials:
a. Click on the Basic Auth, you should see something like the screen below:

 28

b. Type the OData End-point user ID and password

c. Now click Refresh headers, you should see the following:

6. If you want to associate a custom ID when you register your application, you can add the header X-
SMP-APPCID to the header section and provide any value. Or you can leave it blank and SMP will
associate a GUID with it. For this test, we are providing a custom ID. Next for registration purpose,
provide some value X-SMP-APPCID = KOLAIDS, to do that, do the following:

a. Click on the Normal Tab
b. In the header section as shown below, type the Header, X-SMP-APPCID as shown below:

 29

7. Now we need to provide a body, click on raw tab as shown below:

8. In the body section, paste the following XML code below:

<?xml version="1.0" encoding="UTF-8"?>
<entry xml:base="http://pvs9096.wdf.sap.corp:8080/odata/applications/latest/odata.flight/Connections"
xmlns="http://www.w3.org/2005/Atom"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">
<content type="application/xml">
<m:properties>
<d:DeviceType>Windows</d:DeviceType>
</m:properties>
</content>
</entry>

9. You should see something like that:

 30

NOTE: the Authorization Basic value may vary since the user id and password it may not be the same as our
credential information.

10. Test the service Click Send button, if everything goes well, you should see the following below which
indicates the application is successfully registered on SMP server.

Similarly, you can test GET operation with following inputs as shown in the below screen:

URL: http://usphlvm1383.phl.sap.corp:80/odata.flight/
X-SMP-APPCID = KOLAIDS
Content-Type = application/atom+xml;charset=utf-8
Authorization = Basic d2YtbW0tNDp3ZWxjb21l

In the above case the Apache proxy server is usphlvm1383 processing HTTP requests. Look at the response
below to see if the cookie is formed correctly

http://usphlvm1383.phl.sap.corp/odata.flight/

 31

Verify that SMP is configured correctly for Session Stickyness. Note that in the response we have a
SMPServerNode96 is appended to the X-SMP-SESSID cookie.

If you are using above log format, then your logs should like something like below in your enchancedlog.log file
located under logs folder:

The first request for a user where initial cookies are not set will show: Changed:1 Sticky:-

Subsequent requests should show: Changed:- Sticky:X-SMP-SESSID

That means that apache read the X-SMP-SESSID cookie and was able to send the request to the correct server.

If you see Changed: 1 Sticky:X-SMP-SESSID that means that session stickyness did not work.

NOTE: For verifying the session stickiness, above strategy is applied to all other Apache communication
scenarios.

Scenario 2: In this section, Apache as reverse proxy and simple load balancing configuration using one-way

HTTPS communication is covered:

1. SMP Platform SSL Preparation
2. SSL preparation for Apache server
3. Install trusted Certificates
4. Configure httpd.config for one-way HTTPS communication

5. Restart Apache Server

 32

6. Verify communication
7. Testing OData using Apache Server URL (Secured)

Reverse proxy, and SAP Mobile Server each use their own certificate; you can create or sign these certificates

from one root certificate. In one-way SSL scenario, only the client authenticates the server. This means that the

public cert of the Apache server needs to configured in the trust store of the SMP Server.

1. SMP Platform SSL Preparation

keytool is a java utility that manages a keystore of private keys and associated certificates, as well as certificates
from trusted entities. SAP Mobile Platform uses a single keystore file, located at
SMP_HOME\Server\configuration\smp_keystore.jks. This is the file to configure and protect. keytool is in
SMP_HOMEsapjvm_7\bin

IMPORTANT: Make sure you backup your smp_keystore.jks

a) Create certificate request (CSR file)
keytool.exe -certreq -keyalg RSA -alias smp_crt -file pvs9097.csr -keystore
C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks -storepass empass12

NOTE: The certificate request must be signed by an authority or self-signed before importing it into the SMP
keystore.

For production environment, the Certificate Signing Request that you generated can be submitted to a CA to
create a certificate signed by the CA.

b) Import root certificate of the CA
keytool -import -keystore C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks -
file C:\SAP\MobilePlatform3\sapjvm_7\bin\SAPNetCA.crt -alias TCSRootCert

c) Import signed certificate
keytool -import -keystore C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks -
file C:\SAP\MobilePlatform3\sapjvm_7\bin\pvs9097.crt -alias smp_crt

d) Verify the certificate upload
keytool -list -keystore C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks

e) Restart SMP servers after you upload the signed certificates.

Refer following link for more information on keytool:
http://help.sap.com/saphelp_smp303svr/helpdata/en/7c/2eddd970061014ba46b1c4748c229b/content.htm

There is no auto synchronization for cluster server's keystore and they need to be maintained manually. Also
import all required certificates to all cluster nodes' keystore and be sure to keep all certificates alias consistent.
Use keytool to check all certificate in the keystore:

 keytool -list -keystore C:\SAP\MobilePlatform3\Server\configuration\smp_keystore.jks

http://help.sap.com/saphelp_smp303svr/helpdata/en/7c/2eddd970061014ba46b1c4748c229b/content.htm

 33

2. SSL Preparation for Apache Server

The OpenSSL is used to generate an RSA Private Key and CSR (Certificate Signing Request). It can also be

used to generate self-signed certificates which can be used for testing purposes or internal usage.

Depending on your operating system, download the OpenSSL software from following link:

https://www.openssl.org/related/binaries.html

a) Generate RSA

openssl genrsa -des3 -out server.key 2048

Enter pass phrase twice to generate server.key: s3pAdmin

b) Create CSR file

1. Set the environment variable: set OPENSSL_CONF=c:\OpenSSL-Win64\bin\openssl.cfg
2. Issue this command:

openssl req -sha256 -out ApacheServer.csr -new -newkey rsa:2048 -nodes -keyout server.key

Country Name:CA

State or Province Name:ONTARIO

Locality Name:TORONTO

Organization Name:SAP

Organizational Unit Name:COE

Common Name:USPHLVM1383.PHL.SAP.CORP

Email Address:

Please enter the following 'extra' attributes to be sent with your certificate request

A challenge password:

An optional company name:

c) Generate signed Certificate

For production environments, the Certificate Signing Request that you generated can be submitted to a CA to
create a certificate signed by the CA.

d) Remove Passphrase from Key

Apache will ask for the pass-phrase each time the web server is started. Obviously this is not necessarily
convenient so you can remove passphrase from the generated key by following commend:

1. copy server.key server.key.org
2. openssl rsa -in server.key.org -out server.key

Result is new RSA server.key is generated.

e) Copy server.key and ApacheServer.crt to Apache conf directory. The location of this directory will differ

depending on where Apache is installed.

https://www.openssl.org/related/binaries.html

 34

3. Installing Trusted Certificates

SMP Platform:

Using keytool.exe, upload ApacheServer crt into SMP keystore as the trusted certificate

keytool -import -trustcacerts -alias ApacheServer -file ApacheServer.crt -keystore smp_keystore.jks

Apache Platform

Install CA cert and SMP server certs (pvs9096, pvs9097) onto the Apache server

For example:

Right click on the certificate and add it to trusted Root Certificate as shown below.

4. Configuring SSL properties in httpd.conf

In the following example, https://usphlvm1383.phl.sap.corp:443/ is mapped to following SMP Nodes:

¶ pvs9096.wdf.sap.corp:8081

¶ pvs9097.wdf.sap.corp:8081

Listen 443
<VirtualHost *:443>
SSLEngine On
SSLProxyEngine On
ProxyPreserveHost On
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off
SSLCertificateFile /Apache24/conf/ApacheServer.crt
SSLCertificateKeyFile /Apache24/conf/server.key
ServerName usphlvm1383.phl.sap.corp
<Proxy balancer://smpcluster>
 BalancerMember https://pvs9096.wdf.sap.corp:8081 route=SMPServerNode96

 35

 BalancerMember https://pvs9097.wdf.sap.corp:8081 route=SMPServerNode97
 ProxySet stickysession=X-SMP-SESSID
 ProxySet lbmethod=byrequests
</Proxy>
ProxyPass / balancer://smpcluster/
ProxyPassReverse / balancer://smpcluster/
ErrorLog "C:/Apache24/logs/error.log"
LogFormat "%h %l %u %t \"%r\" %>s %b duration:%T/%D balancer:%{BALANCER_WORKER_NAME}e
Changed:%{BALANCER_ROUTE_CHANGED}e Sticky:%{BALANCER_SESSION_STICKY}e"
TransferLog /Apache24/logs/enhancedlog.log
</VirtualHost>

5. Restart apache and test OData connectivity on RestClient.

6. Verify one-way HTTPS Scenario:

Validate the configuration by opening a browser and testing these URLs:

2.0 https:// usphlvm1383.phl.sap.corp:443

URL should return a page with this information:

7. Testing POST operation via Apache with HTTPS. Port 443 is the default https port.

URL: https://usphlvm1383.phl.sap.corp:443/odata.flight/

Operation = GET

1. Invoke POSTMAN RESTClient,

2. Provide the Apache host name in the URL with https port (443), the URL should look like this
https://<apach-server-host>:443/odata/applications/latest/odata.flight/Connections

https://usphlvm1383.phl.sap.corp/odata.flight/

