

Using EJBs in Web Dynpro
Applications

SAP NetWeaver 04

SAP Online Help

Copyright

© Copyright 2004 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400,
OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, and Informix are trademarks or registered trademarks of IBM
Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and
services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their respective companies.
Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP
AG and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

Using EJBs in Web Dynpro Applications 2

SAP Online Help

Icons in Body Text

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP Library documentation to help you identify different types of
information at a glance. For more information, see Help on Help → General Information
Classes and Information Classes for Business Information Warehouse on the first page of any
version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.
Example text Emphasized words or phrases in body text, graphic titles, and table

titles.

EXAMPLE TEXT Technical names of system objects. These include report names,
program names, transaction codes, table names, and key concepts of a
programming language when they are surrounded by body text, for
example, SELECT and INCLUDE.

Example text Output on the screen. This includes file and directory names and their
paths, messages, names of variables and parameters, source text, and
names of installation, upgrade and database tools.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Angle brackets indicate that you replace these
words and characters with appropriate entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

Using EJBs in Web Dynpro Applications 3

SAP Online Help

Using EJBs in Web Dynpro Applications .. 5
Importing the Initial Projects ... 7
Writing Data Access Command Beans... 9

Checking the EJB Project .. 10

Creating a Java Proejct ... 11

Implementing the Command Bean.. 12

Creating the JAR... 16

Defining the Web Dynpro Model ... 17

Importing the JavaBean Model... 17

Creating the Context... 19

Mapping the Component Context to the View Context .. 22

Binding UI Elements ... 23

Implementing the Web Dynpro Application .. 25

Deploying and Running the Sample .. 27

Using EJBs in Web Dynpro Applications 4

SAP Online Help

 Using EJBs in Web Dynpro Applications

Introduction
This tutorial covers all the steps necessary for using existing business functions from within a
Web Dynpro application. The business functions are provided in the form of an Enterprise
JavaBean (EJB) application where the business logic is implemented through a stateless
session bean and the persistence through a CMP-based entity bean.

In order to use the existing functions in the Web Dynpro application, we will import a model
that facilitates their usage. The JavaBean importer is used to import the model. Strictly
speaking, it would be possible to import a session bean using the JavaBean importer. The
result would be a model class without any properties. Since you can only bind properties, not
methods, to UI elements, this would not make sense. Thus, we will have to implement a
command bean in the form of an intermediate layer, which serves as the input for the
JavaBean import and provides the necessary properties.

Now the different layers of the application look as follows:

The example scenario in this tutorial consists
of different components: a Dictionary table
and Enterprise JavaBeans (EJBs), which are
already provided as an application skeleton;
a Data Access Command Bean (JavaBean),
which will be developed in this tutorial; and a
Web Dynpro Project. In the Web Dynpro, the
command bean will be imported into the Web
Dynpro project using the JavaBean importer
wizard.

Sample Application
This tutorial aims at realizing a simple calculator Web application. It enables the user to
calculate a bonus. The Web page accepts a social security number and a multiplier as the
user’s input and displays the calculated bonus amount in response. The calculated bonus
must also be recorded in a database table. The bonus calculation is performed by the
business method of a session bean. When the server receives the input, it passes the request
to the calcualateBonus () method, which calculates the bonus. Then it returns the calculated
value to the end user. The storeData business method also receives the calculated bonus
and stores it in the database table. For accesses to table data, a container-managed
persistence entity bean is used. Since the social security number is unique, it can only be
entered once. If the same number is entered more than once, the storeData method returns a
Duplicate Key Exception message.

The following picture illustrates the different projects and the enclosed components of our
example application.

Using EJBs in Web Dynpro Applications 5

SAP Online Help

S
A
P J2

E
E
 E

n
g
in

e

Deploy

EJB Module Project Enterprise Appl. Proj.

EJB-JAR EAR

Deployment
Descriptors Deployment

Descriptors

Web Dynpro Project

JavaBean Model

BonusBean

BonusCalculatorBean

Deploy

Java Project

MyCommandBean

MyCommandBean.jar

Dictionary Project

BONUS_TABLE

SDA
Deploy

EAR

Import

Import

Task
Most of the components of the example application no longer need to be created and are, for
the most part, ready for use – provided you start with a project base that already exists. In this
tutorial, we will focus on all the development steps that are required in a Web Dynpro
application in order to connect up to the business logic implemented by EJBs when using the
JavaBean import.

The EJB application and the initial Web Dynpro application are already provided in the form of
an initial example application, which can be imported from SDN. Then, the command bean is
implemented in a separate Java project and imported into the Web Dynpro project. Finally,
the context mappings are performed and the required methods are implemented to invoke the
business methods form within the Web Dynpro. At runtime, the data entered by the user of
the application is passed to the model through the data binding between the input fields and
the context elements, and through the model binding of these context elements.

Objectives
By the end of this tutorial, you will be able to:

Using EJBs in Web Dynpro Applications 6

SAP Online Help

! Write a simple Data Access Command Bean based on predefined business logic.
! Generate a model to be used for linking up the business logic of the EJB project from

within the Web Dynpro project.
! Declare a context node in the component controller in such a way so that a connection

to the model can be created.
! Perform the implementation for using business methods in Web Dynpro components.
! Import all necessary libraries to be used by the model import wizard in the Web Dynpro

project.

Prerequisites
Systems, installed applications, and authorizations

 You have installed the SAP NetWeaver Developer Studio.

 You have access to the SAP J2EE Engine.

Knowledge
 You have acquired some basic experience with Web Dynpro applications.

 You have basic knowledge of the EJB programming model.

 You are experienced in working with the SAP NetWeaver Developer Studio.

 Importing the Initial Projects
To focus the development of this example application on the actual content covered, there is
a predefined sample application template available in the SAP Developer Network (SDN)
http://sdn.sap.com (Web Application Server area | Web Dynpro | Samples and Tutorials
Quicklink).

Prerequisites
• You have access to the SAP Developer Network (http://sdn.sap.com) with a user

ID and password.

• The SAP NetWeaver Developer Studio is installed on your computer.

Procedure
Importing the initial projects into the Developer Studio
...

1. Call the SAP NetWeaver Developer Network using the URL http://sdn.sap.com and
log on with your user ID and the corresponding password. If you do not have a user
ID, you must register before you can log on.

2. Navigate to the Web Application Server | Web Dynpro area and then to the Samples
and Tutorials section.

3. Download the ZIP file TutWD_EJBinWD_Init.zip, which contains the Dictionary
project BonusCalculationDic, the EJB Projects BonusCalculationEJB, and
BonusCalculationEar as well as the Web Dynpro project
TutWD_BonusCalculation_Init.

Using EJBs in Web Dynpro Applications 7

https://www.sdn.sap.com/
http://sdn.sap.com/
http://sdn.sap.com/

SAP Online Help

4. Unzip the contents of the ZIP file into the work area of the SAP NetWeaver Developer
Studio or into the local directory.

5. Call the SAP NetWeaver Developer Studio.

a. Import the projects. To do this, choose File Import in the new menu.
Choose Multiple Existing Projects into Workspace and then Next to confirm.

b. Choose Browse, open the folder in which you unzipped the projects of the
ZIP file TutWD_EJBinWD_Init, select those projects (BonusCalculationDic,
BonusCalculationEJB, BonusCalculationEar and
TutWD_BonusCalculation_Init), and choose Finish to confirm.

Initial Projects
After you have imported the project templates, the following projects are visible in the
Developer Studio:

Dictionary Project

BonusCalculationDic that contains the table BONUS_TABLE of the bonus calculation data.

J2EE Projects

EJB project: BonusCalculationEJB

The session bean of the EJB module project has two business methods – calculateBonus() and
storeData().

EAR project: BonusCalculationEar

Web Dynpro project

Web Dynpro project: TutWD_BonusCalculation_Init This predefined Web Dynpro project
implements the UI layer.

 Web Dynpro application: BonusCalculationApp

 Web Dynpro component: BonusCalculationaComp

 This is the Web Dynpro component that contains our entire application.

 View: BonusCalculationView

In this view, the user can enter the social security number and the multiplier into the
appropriate input fields and trigger the bonus calculation.

On the result area, some bonus calculation data will be displayed.

Initially, some UI elements, context elements, and event-handlers are provided in the
project.

Using EJBs in Web Dynpro Applications 8

SAP Online Help

Using EJBs in Web Dynpro Applications 9

Layout:

Context:

Methods:

 Window: BonusCalculationComp

 Writing Data Access Command Beans
Applying the Data Access Command Bean Pattern

To be able to use the JavaBean Importer in the Web Dynpro, we require an access layer
(intermediate layer) consisting of JavaBeans that encapsulate access to the back-end
system. This kind of intermediate layer, therefore, forms a high-level component that lies
between the business logic and a Web Dynpro application that serves as an EJB client.

It also serves to hide all low-level aspects of the application – such as data acquisition logic or
details regarding the storage of persistent data – and to decouple them from the EJB layer.
However, in the Developer Studio there is no way to simply generate such an intermediate
layer – for example, using a wizard. It must be coded manually.

If you use this pattern, a Client application will program against the interface that is provided
by the bean. A Data Access Command Bean (DACB) is a pure JavaBean object that
represents a simple interface to Enterprise Java Bean clients. For the most part, the
implementation of the DACBs consists of Set and Get methods, as well as an Execute
method.

The following diagram displays what an EJB client needs to do. First of all, the JavaBean
needs to be instantiated before all the required input parameters are set using the Set
method. The actual call of the business method takes place using execute(). The back-end
files resulting from this call are the passed on to the client using Get methods.

SAP Online Help

Data Access
Command BeanEJB Client

instantiate the bean

execute ()

setInputPropertyA ()

setInputProperty...()

getResult...(arg)

Backend System

callBusinessMethod ()

Resulting Steps

If we transfer the DACB pattern to our example, this will have the following consequences:

The first work step will be that we create a DACB suitable for the corresponding business
method in the session bean from the EJB project in a separate Java project and that we
implement it according to DABC patterns. The resulting JAR is then used at a later time as
input for the JavaBean importer in the Web Dynpro.

 Checking the EJB Project
When you attempt to call an EJB, it is important that this EJB has a unique JNDI name. Since
the Data Access Command Bean, which we are about to create, calls the session bean of the
BonusCalculationEJB project, we need to ensure that the session bean is given such a JNDI
name.

Prerequisites
 You have imported all the required projects.

Procedure
Switch to the J2EE Perspective. From the project structure select BonusCalculationEjb. Open
the ejb-j2ee-engine.xml by double-clicking it. Select the Enterprise Beans tab if not already
selected. Expand the session beans node and double-click on BonusCalculatorBean. In the
field JNDI name, MySessionBean should be displayed. If not, enter MySessionBean and
save the changes.

Using EJBs in Web Dynpro Applications 10

SAP Online Help

 Creating a Java Project
In this procedure you will create a separate Java project that serves as a container for the
Data Access Command Beans and will be imported in the Web Dynpro model.

Prerequisites
 You have imported all the required projects.

Procedure
1. Switch to the Java Perspective and choose File New … Project to start the New

Project wizard. Select Java (in the left-hand pane) and Java Project (in the right-hand
pane). Choose Next.

Using EJBs in Web Dynpro Applications 11

SAP Online Help

Give your Java Project the name BonusCalculationBeans and choose Next. 2.

3. In the Projects tab, select the EJB project BonusCalculationEjb and choose Finish.

4. Confirm the upcoming message with Yes.

Result
The wizard generates a default structure for your new Java project.

 Implementing the Command Bean
The JavaBean class MyCommandBean, which serves as a Command Bean, should be able to
store all the data that is needed to calculate the bonus and to display the result (including
possible error messages). MyCommandBean will be initialized from within the Web Dynpro
and passes the bonus calculation data to the session bean (BonusCalculatorBean) of the
EJB Project.

MyCommandBean will be imported for the JavaBean model into the WebDynpro and
supplies the properties to be bound to the controller context. For this purpose,
MyCommandBean must contain a field for each relevant value. The fields will be named
multiplier, ssn, bonusAmount, and message.

Procedure
Creating the JavaBean MyCommandBean

1. In the Java Perspective, select the BonusCalculationBeans project and choose New
Class from the context menu.

2. Enter MyCommandBean for the name and com.sap.bonus.calculation.bean for the
package. Choose Finish.

Implementing the Command Bean Class
Now that the new class has been created, the bean properties multiplier, ssn, bonusAmount,
and message will be declared.

1. Add the following attributes to the class:
Public class MyCommandBean {
 private int multiplier;
 private String ssn;
 private double bonusAmount;
 private String message;
...
}

2. Since we want to call the session bean from within the command bean, we now need to
declare variables for the local and the local home interface (BonusCalculatorLocal

Using EJBs in Web Dynpro Applications 12

SAP Online Help

and BonusCalculatorLocalHome) of the session bean. Insert the following lines of
code:

public class MyCommandBean {
 private int multiplier;
 private String ssn;
 private double bonusAmount;
 private String message;

 BonusCalculatorLocal theCalculator = null;
 BonusCalculatorLocalHome home = null;
}

Do not worry if errors occur. From the context menu of the editor, choose Source Organize
Imports. Now there should be no errors left.

3. Since this Java class needs to comply with the JavaBean specification, we have to
write Get and Set methods for the properties we declared before. From the context of
the editor, choose Source Generate Getter and Setter Methods. From the screen
that appears select bonusAmount, message, multiplier, and ssn.

4. Now we have to write a constructor that will be executed each time the command bean

is instantiated. In this constructor, the look-up for the session bean will be executed.
Consider, that we need to add localejbs in the lookup string while using local
interface for EJB access.
Add the following lines of code:

Using EJBs in Web Dynpro Applications 13

SAP Online Help

public class MyCommandBean {
 private int multiplier;
 private ssn; String
 private double bonusAmount;
 private String message;

 BonusCalculatorLocal theCalculator = null;
 BonusCalculatorLocalHome home = null;

 public MyCommandBean() throws CreateException {
 //looks up the session bean and creates the Home interface
 try {
 InitialContext ctx = new InitialContext();
 home = (BonusCalculatorLocalHome)ctx.lookup("localejbs/MySessionBean");
 theCalculator = home.create();
 } catch (Exception namingException) {
 namingException.printStackTrace();
 }
 }

}

Again, from the context menu of the editor, choose Source Organize imports.

5. The next step is to create a method called execute, which calls the 2 business methods
(calculateBonus and storeData) of the session bean. Insert the following lines of code:

public void execute() {
 //Calls the calculateBonus method of the session bean
 //which calculates and returns the bonus

 try {
 this.bonusAmount = theCalculator.calculateBonus(multiplier);
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }

 // Calls the storeData method which tries to store the calculated bonus
 // and the corresponding Social Security Number in the entity bean.
 // In case the Social Security Number has been entered already the
 // method returns “Duplicate Key Exception”, if not it returns “”.

 try {
 this.message = theCalculator.storeData(this.getBonusAmount(),
 this.getSsn());
 } catch (Exception e1) {
 e1.printStackTrace();
 }
}

In this simple example we do not make any use of explicit transactions calls.
However, in general case we recommend to handle transactions using JTA.

Using EJBs in Web Dynpro Applications 14

SAP Online Help

Result
You have successfully implemented the command bean, which will serve as an input for the
Web Dynpro model importer.

Using EJBs in Web Dynpro Applications 15

SAP Online Help

 Creating the JAR
In order to be able to import the command bean through the JavaBean import, a JAR file
needs to be exported.

Prerequisites
 The structure of the Java Project BonusCalculationBeans is currently displayed in

the Package Explorer.

Procedure
1. Switch to the Navigator view and select BonusCalculationBeans. From the context

menu, choose Export Jar File and choose Next.

2. Choose the Browse button, navigate to BonusCalculationBeans, and enter
MyCommandBean.jar in the Name field. Choose Save and then Finish.

Result
You have created the JAR file and are now ready to import the JavaBean model.

Using EJBs in Web Dynpro Applications 16

SAP Online Help

 Defining the Web Dynpro Model
In compliance with the MVC paradigm, a model in Web Dynpro enables the user to access
business data that is stored outside the Web Dynpro application. In our case, however, the
business data that belongs to our bonus sample application is made accessible through Data
Access Command Beans. These beans offer exactly the input we need for the JavaBean
model importer in Web Dynpro.

Within the Web Dynpro project, you will obtain such a model as a result of proxy generation. It
is represented by a set of model classes, including their relations. However, in our quite
simple case we will see only one model class generated and there is no relation defined here.
In the following step, we only need to bind the model object to the context. Each context,
however, has a node that represents the corresponding model object. The model node, in
turn, defines a set of attributes that corresponds with the properties of the JavaBean. Finally,
we only need to take care of the link from the UI elements to the business data referenced in
the view controller context (data binding for the Web Dynpro view’s UI elements).

 Importing the JavaBean Model
A model enables the user to access business data that is outside the Web Dynpro application
from within the application. In this tutorial, the business data that belongs to the bonus
calculation is made accessible through a JavaBean import.

Within a Web Dynpro component, business data is stored in separate context structures
(consisting of context nodes and context attributes). The link between the context elements
contained there and the business data in an existing model can be set up using the
communication classes and auxiliary classes required for this purpose. You can use the Web
Dynpro tools to generate such a model for a command bean. The model mainly consists of
special model classes that you can use to link context structures to the model.

Below you will learn how you can generate such a model.

Procedure
Adding JARs to the Web Dynpro Project Classpath
Now you have to put the .jar file of the EJB Module Project and the jar file Java Project in the
library folder of the Web Dynpro application.

1. Switch to the Navigator View and select BonusCalculationEJB
BonusCalculationEJB.jar. From the context menu, select Copy and navigate to
TutWD_BonusCalculation_Init lib. Select Paste from the context menu.

2. Proceed in the same way with the JAR file MyCommandBean.jar from your Java
project.

3. Add the two JAR Files to the classpath of your Web Dynpro project
TutWD_BonusCalculation_Init.

4. Add also the ejb20.jar to the classpath. Use the classpath variable
TSSAP_JAVAX_HOME.

Using EJBs in Web Dynpro Applications 17

SAP Online Help

Importing the JavaBean Model Implementation
1. In the project structure, expand the node Web Dynpro → Models. From the context

menu, choose Create Model to start the appropriate wizard.

2. Choose the Import JavaBean Model option, followed by Next. Enter the name
BeanModel as the model name and com.sap.bonus.calculation.model as the
package name.

3. Select local JAR file and browse for the MyCommandBean.jar. Select Deploy Time and
click Next.

4. In the next screen, select MyCommandBean and chooseAdd -->.

5. Choose Finish.

Result
You have now created a model named BeanModel in your Web Dynpro project. In
accordance with the MVC paradigm, the model was not simply generated as part of the Web

Using EJBs in Web Dynpro Applications 18

SAP Online Help

Dynpro component, but as an independent development object. Accordingly, you will have to
explicitly create this model for the Web Dynpro component before it can be used there.

The generated model class is now visible within the project structure in the Web Dynpro
Explorer under the Models node.

 Creating the Context
Each Web Dynpro component is supplied with a corresponding Component Controller. This
controller is responsible for the acquisition of the data required by the command bean for the
bonus calculation. Accordingly, it must be able to depict the corresponding input and output
structures of the SessionBean model. In order to create a connection between the
Component Controller and the model created in the previous step, you will bind the context of
the Component Controller to the created model structure using the Data Modeler.

Procedure
Adding a Model to the Web Dynpro Component
...

Open the Data Modeler through the context menu entry Open Data Modeler of the
node BonusCalculationComp. In the toolbar on the left, choose the Add an existing
model to the component icon. The icon will turn gray. Place the cursor on the Used
Models area and left-click.

1.

2. Select the SessionBeanModel checkbox and confirm by pressing OK. The structure of
the Web Dynpro component BonusCalculationComp will look like this in the Data
Modeler:

Using EJBs in Web Dynpro Applications 19

SAP Online Help

Binding the Component Controller Context to the Command Bean
In the Data Modeler, you can easily declare the connection between the context of the
Component Controller and the BeanModel you have created.

1. In the Data Modeler toolbar, choose the Create a data link icon. Draw a line
beginning at Component Controller and ending at BeanModel. The Model Binding
Wizard starts automatically.

Using Drag & Drop, drag the node of the model class MyCommandBean in the
BeanModel to the root node of the component controller context, and drop it.

2.

3. In the following input dialog, select the model node and all the model attributes.

Using EJBs in Web Dynpro Applications 20

SAP Online Help

If you now expand the context tree in the following dialog boxes, the declared model
link between the Component Context node and the model classes, including their
relations, will be displayed graphically through link lines. The relations are expanded in
the model tree (right window) in the associated classes.

4. Close the Model Binding Wizard by choosing Finish.

Result
From the model definition, you have now defined a structure of context model elements
(consisting of model nodes and model attributes) in the component controller
BonusCalculationComponent, and you have also bound these to the corresponding
model class.

 Mapping Component Context to View Context
In the last step, you created a structure for context model elements in the context of the
component controller and also bound this structure to a generated model class. The
component controller is a central point in Web Dynpro. From here, it is possible to control the

Using EJBs in Web Dynpro Applications 21

SAP Online Help

functions of a Web Dynpro component. In this way, its context serves as a storage area for all
the data received from the model. However, a component controller cannot be linked with a
view. For this reason, model data from the context of the component controller must be able
to be passed to the context of a view controller. Only then can model data be displayed in a
view.

It would be technically possible for a view context to access the model, but this would not be
good design style. To use the MVC paradigms in a consistent manner, you require the
component controller as a binding link between the view and the model. In this step of the
tutorial, you will map the context structure of a component controller onto the context of the
view controller. Using this context mapping, you enable context elements of the view to be
referenced – that is, elements that have data stored in the component context and
themselves represent a copy of the actual model data.

Prerequisites
 Open the Data Modeler for the Web Dynpro component BonusCalculationComp.

Procedure
1. In the toolbar, choose Create a data link. Draw a line, beginning with the

BonusCalculationView view and ending at the Component Controller. The Model
Binding Wizard starts automatically.

Using Drag & Drop, drag the node of the model class MyCommandBean in the
Component Controller to the root node of the view controller context. In the following
input dialog, select the model node and model attributes. Then choose OK.

In the final dialog box, the context mapping is displayed graphically:

2.

3. Close the Model Binding Wizard by choosing Finish.

Result
You have created the necessary view context and mapped it to the component context you
created previously. The Data Modeler shows this through the appropriate arrow links.

Using EJBs in Web Dynpro Applications 22

SAP Online Help

You are now in a position to bind UI elements such as input fields to the corresponding view
context elements.

 Binding UI Elements
With the BonusCalculationView, the imported project template has a predefined form that
allows input of relevant bonus calculation data. It returns the social security number, the
calculated bonus, and – if necessary – an error message on the basis of the results data
returned by the command bean. Therefore, you do not need to worry about the layout of your
example application.

You only need to take care of the link from the interface elements to the business data
referenced in the view controller context. You can do this easily through Data Binding.

Prerequisites
 You have set up the view context for the FormView and mapped it to the component

controller context.

Procedure
...

1.

2.

Start the layout editor for the BonusCalculationView.

Set up the data bindings between the UI element properties and the respective context
model attributes in accordance with the table below.

You can start the wizard for data binding of a UI element property to a context
attribute by pressing the button at the right margin of the Value column in
the Properties view.

Property Value

Input field SSNInputField of type InputField

Using EJBs in Web Dynpro Applications 23

SAP Online Help

Properties of InputField – value MyCommadBean.ssn

Input field MultiplierInputField of type InputField

Properties of InputField – value MyCommandBean.multiplier

Input field RetSsnOutputField of type InputField

Properties of InputField – value MyCommandBean.ssn

Input field RetBonusOutputField of type InputField

Properties of InputField – value MyCommandBean.bonusAmount

Input field MessageOutputField of type InputField

Properties of InputField – value MyCommamdBean.message

3. Save the current status of your project.

Using EJBs in Web Dynpro Applications 24

SAP Online Help

 Implementing the Web Dynpro Application
After you have successfully executed all the required declarative development steps, you now
need to add some individual lines of Java code for the view controller.

Within each controller, there are some predefined places where you can add source code.
These include, in particular, the standard methods wdDoInit() and wdDoExit(),and
also the Action Event-Handler in the view controllers.

wdDoInit() is always controlled if the controller is instanced. For this reason, you must
remember that at this point there is an object that – at runtime – represents the entire input,
including all the input parameters for calling the command bean business method.

In the action event handler onActionSubmit(), the actual Command Bean call must be
implemented, based on the data entered by the user and stored in the context concerned.

In the action event handler onActionReset(), the clearing of the fields in the UI has to be
defined, calling setter methods.

Prerequisites
 You have created the JavaBean import model.

 You have mapped the view context onto the Component Controller context.

Procedure
Implementing the Component Controller
Here you define an object that – at runtime – represents the input page of the command bean
method. This object must also be bound to the model node MySessionBean, which was
declared at design time.
...

1.

2.

Choose the Implementation tab for the component controller
BonusCalculationComp.

After the generation routines have been run once again, the updated source code of
the view controller implementation is displayed.

 Between //@@begin wdDoInit() and //@@end of the method wdDoInit(), enter the
following Java code:

/** Hook method called to initialize controller. */
public void wdDoInit()
{
 //@@begin wdDoInit()
 try {
 wdContext.nodeMyCommandBean().bind(new MyCommandBean());
 } catch (Exception ex) {
 IWDMessageManager msgMgr = wdComponentAPI.getMessageManager();
 msgMgr.reportException(ex.getLocalizedMessage(), true);
 }
 //@@end
}

3. In the context menu of the source code editor, choose the function Source Organize
Imports in order to add the missing import line.

Using EJBs in Web Dynpro Applications 25

SAP Online Help

The MessageManager class is imported into the view controller and you can use the
generic UI service to display message texts in the user interface.

Implementing the Action Event Handler of the View Controller
The actual command bean is now called through the execute() method call of the model
object currently stored in the context model node. This already contains the bonus calculation
data entered by the user – through data binding and context mapping.

The returned results – in the example application, solely the social security number, the
bonus amount, and the message – are then displayed automatically in the UI through data
binding.
...

1.

2.

Choose the Implementation tab for the view controller BonusCalculationView.

In the onActionSubmit() method, add the following source code:

/** de larec d validating event handler */
public void onActionSubmit(com.sap.tc.webdynpro.progmodel.api.IWDCustomEvent wdEvent
)
{
 //@@begin onActionSubmit(ServerEvent)
 wdContext.currentMyCommandBeanElement().modelObject().execute();
 //@@end
}

 In the onActionReset() method, add the following source code: 3.

/** de larec d validating event handler */
public void onActionReset(com.sap.tc.webdynpro.progmodel.api.IWDCustomEvent wdEvent)
{
//@@begin onActionReset(ServerEvent)
wdContext.currentMyCommandBeanElement().setSsn("");
wdContext.currentMyCommandBeanElement().setMultiplier(0);
wdContext.currentMyCommandBeanElement().modelObject().setSsn("");
wdContext.currentMyCommandBeanElement().modelObject().setBonusAmount(0.0);
wdContext.currentMyCommandBeanElement().modelObject().setMessage("");
//@@end
}

Result
The Developer Studio updates and compiles the Java classes belonging to your project.
(Note: Compilation only occurs if you are using the Workbench standard settings.) After you
have done this, no more error messages should appear in your tasks view.

Using EJBs in Web Dynpro Applications 26

SAP Online Help

 Deploying and Running the Sample
Now that you have reached this stage, you can start the fully developed example application
in the Web Browser as described below.

Prerequisites
 You have made sure that the SAP J2EE Engine has been launched and that you are

connected to an appropriate database instance of the SAP DB.

To do this, refer to Starting and Stopping the SAP J2EE Engine.

 You have checked that the configuration settings for the J2EE server are entered
correctly in the Developer Studio.

To check the server settings, choose the menu path Window → Preferences → SAP
J2EE Engine.

Procedure
Deploying the Tables and the J2EE Application

1. First of all, you need to deploy the SDA file of the BonusDictionary Project. To do so,
switch to the Dictionary Perspective. In the project structure, select BonusDictionary
and choose Deploy from the context menu.

2.

3.

4.

Now you need to deploy the EAR file of the BonusCalculationEJB Project. Switch to the
J2EE Perspective. In the project structure select BonusCalculationEar
BonusCalculationEar.ear. Select Deploy to J2EE Engine from the context menu.

Adding Sharing References for the Web Dynpro Project

In oder to access EJBs from the Web Dynpro application at runtime, we also need to
add a sharing reference to the deployed Ear from within the Web Dynpro project. To do
so, select the project properties and choose Web Dynpro References Sharing
references.

Choose the Add button and enter the fully qualified name (vendor name/Ear name) for
the Ear required.

Building the Web Dynpro Project

5. Switch back to the Web Dynpro Perspective. Save the current status of the metadata
for the project using the button in the upper application toolbar of your Developer
Studio, if you have not already done so.

Open the context menu for the project node (TutWD_BonusCalculation_Init) in
the Web Dynpro Explorer and choose Rebuild Project. Make sure that the Tasks
view does not display any errors for your project. You can ignore any warning
messages for labelFor properties that have not been set.

6.

Using EJBs in Web Dynpro Applications 27

SAP Online Help

Deploying and Launching the Web Dynpro Application

7. In the Web Dynpro Explorer, open the context menu for the application object
BonusCalculationApp. Choose Deploy new archive and run.

Result
...

The Developer Studio performs the deployment process in one single step, based on an
automatically generated Enterprise Archive file, and then automatically launches your
application in the Web Browser.

Test your newly developed Web Dynpro application by entering data into the input fields and
then clicking the button Submit.

After you have triggered a server roundtrip (here you communicate using MyCommandBean),
the returned result is displayed on the user interface in the Web Browser.

If the entered social security number has not been entered, no error message is displayed in
the message field yet.

Using EJBs in Web Dynpro Applications 28

SAP Online Help

If you enter a social security number that already exists, a Duplicate Key Exception message
is displayed in the message field.

Using EJBs in Web Dynpro Applications 29

	Copyright
	Icons in Body Text
	Typographic Conventions
	Introduction
	Sample Application
	Task
	Objectives
	Prerequisites
	Systems, installed applications, and authorizations
	Knowledge
	Importing the initial projects into the Developer Studio

	Prerequisites
	Procedure
	Prerequisites
	Procedure
	Result
	Procedure
	Creating the JavaBean MyCommandBean
	Implementing the Command Bean Class

	Result
	Prerequisites
	Procedure
	Result
	Procedure
	Adding JARs to the Web Dynpro Project Classpath
	Importing the JavaBean Model Implementation

	Result
	Procedure
	Adding a Model to the Web Dynpro Component
	Binding the Component Controller Context to the Command Bean

	Result
	Prerequisites
	Procedure
	Result
	Prerequisites
	Procedure
	Prerequisites
	Procedure
	Implementing the Component Controller
	Implementing the Action Event Handler of the View Controller

	Result
	Prerequisites
	Procedure
	Deploying the Tables and the J2EE Application
	Adding Sharing References for the Web Dynpro Project
	Building the Web Dynpro Project
	Deploying and Launching the Web Dynpro Application

	Result

