
 1

How to Use a Decision Table as a Custom Value
List

Applies to:
SAP Decision Service Management 1.0 (or BRFPlus on SAP NetWeaver 7.02 or above)

Summary

When using business rules to provide more flexible, adaptable, and provable replacements for traditional Z

tables, Decision Tables provide an easy way to hold valid value lists that change over time. We demonstrate

how to use a Decision Table as a valid value list for another rules Data Object, i.e. the business rules rough

equivalent to a ABAP Data Dictionary foreign key.

Author: Jocelyn Dart

Company: SAP Australia

Created on: 10 February 2015

Author Bio

Jocelyn Dart is a Platinum Consultant has worked for SAP Australia for over 20 years and

worked with over 70 organizations in both the Public and Private Sectors. For the last 2-3 years

she been helping customers implement business rules, and has presented at conferences and

run workshops on SAP Decision Service Management and BRFPlus.

 2

Table of Contents

Pre-Requisites .. 3

Create a Value List from a Decision Table ... 3

Create a Custom Defined Value List ... 5
Create a Rules Application Exit Class .. 6

Set the Exit Class to provision custom Value Lists .. 6

Link the Source Value List to the Target Data Object .. 6

Convert Decision Table content to fill a custom Value List ... 6

Assign the Exit Class to the Rules Application ... 7

Testing the Value List ... 12

Debugging and Resolving Issues ... 14

Taking the technique further ... 14

Related Content .. 15

Copyright ... 16

 3

Pre-Requisites
 SAP Decision Service Management 1.0, or BRFPlus on SAP NetWeaver 7.02 or above

o Note: This example was originally worked on a SAP Decision Service Management 1.0
SP03 (SAP NetWeaver 7.40 SP09) system. However the same principles can be used on
earlier BRFPlus releases, although some code adjustments may possibly be needed on
earlier releases.

 Some ABAP development skills

 A Rules Application created in the BRFPlus workbench of SAP Decision Service Management or
SAP NetWeaver containing:

o A rules Data Object of type Element which will be used as the target of the value list

o Decision Table with at least 2 columns that is the source of the value list:

 One column will hold the list of valid values

 The other column will hold descriptions of the values

For simplicity, the column of valid values is assumed to be entered into the Decision Table cells using only
the Direct Input option. It is technically possible to extend the technique to cover expressions that are
constants, and ranges that use Equals values, but this will not be shown in this document.

The descriptions may be of any data type, and entered into the Decision Table cells in any format (direct
input, ranges, or expressions).

Note: The value and description columns may be any columns of the decision table. The decision table

may also hold other columns (not used in the value list) alongside the value and description columns.

Create a Value List from a Decision Table
The steps included in this document assume that the Rules Application does not currently have an Exit Class
associated with it, and that the Exit Class will be created from scratch.

However it is, of course, equally possible to extend an existing Exit Class to add custom defined value lists.

In the example a column Reference Code of one Decision Table Document Type Preferences will use a
value list sourced from another Decision Table Valid Reference Codes.

Such a reference code could be used as part of an overarching decision service (aka BRFPlus function),
where the reference code is used to broadly categorize documents, e.g. for analytics or security
authorization purposes.

Note: The overarching decision service is not shown and is not relevant to this technique.

Target Decision Table: Document Type Preferences

Columns: Document Type, Maximum Size, Document Reference Code

Document Reference Code is the target element that will be linked to the value list. The screenshots below
shows the appearance of the decision table before the value list has been applied. The user has to manually
enter the value of Document Reference Code and does not receive any value help during field entry.

 4

Figure 1 - Document Type Preferences decision table BEFORE value list is created

Figure 2 - Entry into the Document Reference Code is manual, no value help is provided

Source Decision Table: Valid Reference Codes

Columns: Reference Code, Reference Description

This decision table holds the list of valid values and their descriptions that will be used to create the value
list.

 5

Figure 3 - Source Decision Table that holds the list of valid values and their descriptions

In preparation for building the value list, gather the technical IDs from the General section of:

1. The target Data Object of type Element, to which the value list will be assigned

o In the example: Document Reference Code

2. The source Decision Table that holds the valid values and their matching descriptions

o In the example: Valid Reference Codes

3. The Data Objects of type Element assigned as columns of the source Decision Table, which will
provide the valid values and their matching descriptions.

o In the example: Reference Code, Reference Description

Note: The value and description columns may be any columns of the decision table. However… if you use

a condition column then care must be taken in converting ranges and expressions to selectable values.

For a simple example use result columns with direct input values.

Create a Custom Defined Value List

The principles and options for providing value lists in DSM and BRFPlus is covered in greater detail

elsewhere in Customer-Defined Value Lists in SAP NetWeaver Decision Management.

 6

This document describes how to use the Exit Class option to create a value list filled from the content of a

Decision Table.

To keep the code manageable and pragmatic, the example is limited to showing how the following types of

content assigned to the source value element, may be used to fill a value list:

 Direct value Input

 A single “Equals” range compared to Direct Value Input

 A single “Equals” range compared to a Constant expression

Typically direct value input is used for action columns, and a range is used for a condition column.

Note: The value list will act as a value help, i.e. it will assist the user to enter correct values in the target

element. Unlike a data dictionary foreign key, the existence of a value help does NOT necessarily

restrict the entry of other values, not listed in the Source Decision Table, into the target element.

Create a Rules Application Exit Class

Create a ABAP Class that supports interface IF_FDT_APPLICATION_SETTINGS.

Figure 4 - Interface IF_FDT_APPLICATION_SETTINGS makes the class a Rules Application Exit Class

Set the Exit Class to provision custom Value Lists

Add the CLASS_CONSTRUCTOR method to the ABAP Class.

Implement the CLASS_CONSTRUCTOR method with the following code. This will indicate to the Rules

Application that the exit class provides custom value lists:

 if_fdt_application_settings~gv_get_element_values = abap_true.

Link the Source Value List to the Target Data Object

Implement the method IF_FDT_APPLICATION_SETTINGS~GET_ELEMENT_VALUES. In this method the

target Data Object of type Element is linked to the custom-defined value list.

 METHOD if_fdt_application_settings~get_element_values.

 CONSTANTS:

 lc_elementid TYPE if_fdt_types=>id

 VALUE '005056AC35D91EE4ACA3C55A1AA354E6',"Target Element

 lc_dectableid TYPE if_fdt_types=>id

 VALUE '005056AC35D91EE4AC9F32BABB880D99',"Source Decision Table

 lc_valuecol_id TYPE if_fdt_types=>id

 VALUE '005056AC35D91EE4ACA3AD3702A2B4C7',"Source Value Column

 lc_desccol_id TYPE if_fdt_types=>id

 VALUE '005056AC35D91EE4ACA3AFF72EDA54C7'."Source Description Column

 7

 DATA:

 lv_timestamp TYPE if_fdt_types=>timestamp.

 CLEAR: ev_no_checklist, ev_applicable, et_value.

* Only get values for this element

 CHECK iv_id EQ lc_elementid.

* Get the current timestamp to default to current values of the Decision Table

 IF iv_timestamp IS INITIAL.

 GET TIME STAMP FIELD lv_timestamp.

 ELSE.

 lv_timestamp = iv_timestamp.

 ENDIF.

 et_value = convert_dt_to_valuelist(

 EXPORTING

 iv_timestamp = lv_timestamp

 iv_dectable_id = lc_dectableid

 iv_valuecol_id = lc_valuecol_id

 iv_textcol_id = lc_desccol_id).

* Confirm the checklist is ok to use

 IF et_value IS NOT INITIAL.

 ev_no_checklist = abap_false.

 ev_applicable = abap_true.

 ENDIF.

 ENDMETHOD.

Convert Decision Table content to fill a custom Value List

Implement a Static, Private method CONVERT_DT_TO_VALUELIST with signature:

IV_TIMESTAMP IMPORTING OPTIONAL TYPE IF_FDT_TYPES=>TIMESTAMP

IV_DECTABLE_ID IMPORTING MANDATORY TYPE IF_FDT_TYPES=>ID

IV_VALUECOL_ID IMPORTING MANDATORY TYPE IF_FDT_TYPES=>ID

IV_TEXTCOL_ID IMPORTING MANDATORY TYPE IF_FDT_TYPES=>ID

ET_VALUE RETURNING TYPE IF_FDT_APPLICATION_SETTINGS=>T_VALUE

 METHOD convert_dt_to_valuelist.

 DATA:

 lr_admin_data TYPE REF TO if_fdt_admin_data,

 lr_dectable TYPE REF TO if_fdt_decision_table,

 lr_constant TYPE REF TO if_fdt_constant,

 lt_tabledata TYPE if_fdt_decision_table=>ts_table_data,

 lt_columns TYPE if_fdt_decision_table=>ts_column,

 ls_text TYPE if_fdt_types=>element_text,

 ls_value TYPE if_fdt_application_settings=>s_value,

 lv_colno_value TYPE int4,

 8

 lv_colno_text TYPE int4.

 FIELD-SYMBOLS:

 <fs_tabledata> TYPE if_fdt_decision_table=>s_table_data,

 <fs_tabledata2> TYPE if_fdt_decision_table=>s_table_data,

 <fs_valuedata> TYPE any,

 <fs_textdata> TYPE any,

 <fs_column> TYPE if_fdt_decision_table=>s_column,

 <fs_range> TYPE if_fdt_range=>s_range.

* Get the reference to the decision table

 cl_fdt_factory=>get_instance_generic(

 EXPORTING iv_id = iv_dectable_id

 IMPORTING eo_instance = lr_admin_data).

 lr_dectable ?= lr_admin_data.

 CHECK lr_dectable IS BOUND.

* Read all the decision table data

 TRY.

 lr_dectable->get_table_data(

 EXPORTING

 iv_timestamp = iv_timestamp

 IMPORTING

 ets_data = lt_tabledata).

 CATCH cx_fdt_input .

* Exit if we couldn’t read the source decision table

 EXIT.

 ENDTRY.

* Check the source decision table has at least one value in it

 CHECK lt_tabledata IS NOT INITIAL.

* Read the columns of the source decision table

 TRY.

 CALL METHOD lr_dectable->get_columns

 EXPORTING

 iv_timestamp = iv_timestamp

 IMPORTING

 ets_column = lt_columns.

 CATCH cx_fdt_input .

 EXIT.

 ENDTRY.

* Find the column number of the source value column

 READ TABLE lt_columns ASSIGNING <fs_column>

 WITH KEY object_id = iv_valuecol_id.

 IF sy-subrc EQ 0.

 lv_colno_value = <fs_column>-col_no.

 ENDIF.

* Find the column number of the source description column

 READ TABLE lt_columns ASSIGNING <fs_column>

 WITH KEY object_id = iv_textcol_id.

 IF sy-subrc EQ 0.

 lv_colno_text = <fs_column>-col_no.

 ENDIF.

 9

* Just in case… check we found both columns

 CHECK lv_colno_value IS NOT INITIAL.

 CHECK lv_colno_text IS NOT INITIAL.

* Loop over the value column

 LOOP AT lt_tabledata ASSIGNING <fs_tabledata>

 WHERE col_no = lv_colno_value.

 CLEAR: ls_value.

 IF <fs_tabledata>-expression_id IS NOT INITIAL.

* Hmmmm... that's a little too hard..

 CONTINUE.

* Instead why don't we stick to:

* - Direct value input; or

* - A single inclusive equals range compared to a direct value; or

* - A single inclusive equals range compared to a constant

 ELSEIF <fs_tabledata>-ts_range IS NOT INITIAL.

* - A single inclusive equals range compared to a direct value; or

 CHECK lines(<fs_tabledata>-ts_range) = 1.

 ASSIGN <fs_tabledata>-ts_range[position = 1] TO <fs_range>.

 CHECK <fs_range>-sign = 'I'

 AND <fs_range>-option = 'EQ'.

 IF <fs_range>-r_low_value IS NOT INITIAL.

 ASSIGN <fs_range>-r_low_value->* TO <fs_valuedata>.

 IF <fs_valuedata> IS ASSIGNED.

 TRY.

 ls_value-value = <fs_valuedata>.

 CATCH cx_sy_conversion_error.

* Just in case we have a problem

 CONTINUE.

 ENDTRY.

 ENDIF.

 ELSEIF <fs_range>-low IS NOT INITIAL.

* - A single inclusive equals range compared to a constant

* Get the expression - so long as it is a constant

 cl_fdt_factory=>get_instance_generic(

 EXPORTING iv_id = <fs_range>-low

 IMPORTING eo_instance = lr_admin_data).

 TRY.

 lr_constant ?= lr_admin_data.

 IF lr_constant IS BOUND.

 TRY.

 lr_constant->get_constant_value(

 EXPORTING

 iv_timestamp = iv_timestamp

 IMPORTING

 ea_value = ls_value-value)

 10

 .

 CATCH cx_fdt_input .

 CONTINUE.

 ENDTRY.

 ELSE.

 CONTINUE.

 ENDIF.

 CATCH cx_sy_conversion_error.

* Just in case we have a problem

 CONTINUE.

 ENDTRY.

 ELSE.

 CONTINUE.

 ENDIF.

 ELSE.

* - Direct value input

* Get the Direct Input of the value cells in the source decision table

 ASSIGN <fs_tabledata>-r_value->* TO <fs_valuedata>.

 IF <fs_valuedata> IS ASSIGNED.

 TRY.

 ls_value-value = <fs_valuedata>.

 CATCH cx_sy_conversion_error.

* Just in case we have a problem

 CONTINUE.

 ENDTRY.

 ENDIF.

 ENDIF.

* Get the description cell that matches the value cell

 READ TABLE lt_tabledata

 ASSIGNING <fs_tabledata2>

 WITH KEY

 col_no = lv_colno_text

 row_no = <fs_tabledata>-row_no.

 IF sy-subrc EQ 0.

 IF <fs_tabledata2>-expression_id IS NOT INITIAL.

* Get the string format of the expression

 cl_fdt_factory=>get_instance_generic(

 EXPORTING iv_id = <fs_tabledata2>-expression_id

 IMPORTING eo_instance = lr_admin_data).

 lr_admin_data->to_string(

 EXPORTING

 iv_timestamp = iv_timestamp

 iv_max_length = if_fdt_constants=>gc_tostring_max_length

 iv_mode = if_fdt_constants=>gc_tostring_mode_specific

 RECEIVING

 rv_string = ls_value-text)

 .

 ELSEIF <fs_tabledata2>-ts_range IS NOT INITIAL.

 11

* Getting the string format of a range is also possible but let’s keep it simple

 ls_value-text = |Range of values|.

 ELSE.

* Read direct value input of the description cell

 ASSIGN <fs_tabledata2>-r_value->* TO <fs_textdata>.

 IF <fs_textdata> IS ASSIGNED.

 TRY.

 ls_value-text = <fs_textdata>.

 CATCH cx_sy_conversion_error.

 ls_value-text = |Unexpected data in text column?|.

 ENDTRY.

 ELSE.

 IF ls_value-value IS NOT INITIAL.

 ls_value-text = |*** Missing Description for value | && ls_value-value.

 ELSE.

 ls_value-text =

|*** Missing Description for row number | && <fs_tabledata>-row_no.

 ENDIF.

 ENDIF.

 ENDIF.

 ENDIF.

* If all else fails put something…

 IF ls_value-text IS INITIAL.

 ls_value-text =

|*** Missing Description for row number | && <fs_tabledata>-row_no.

 ENDIF.

 APPEND ls_value TO et_value.

 UNASSIGN: <fs_valuedata>, <fs_textdata>.

 ENDLOOP.

 ENDMETHOD.

Assign the Exit Class to the Rules Application

Activate the Exit Class.

Assign the Exit class to the Properties of the Rules Application.

 12

Activate the rules application.

Testing the Value List
Edit the target element in the target decision table. Notice that when editing the value a value help

(dropdown) button appears. Use the button to view the value list. Select a value from the value list and

check it has been assigned to the target cell.

 13

Figure 5 - In edit mode, target element shows a value help button

When the dropdown button is pressed the search result list shows the values from the source Decision

Table.

Figure 6 - On pressing the value help button, the value list appears

In the screenshot below the final result is shown. The value of the column matches the value list, e.g.
LEGAL. Next to the value the description is shown in parentheses, e.g. (Legal).

 14

Figure 7 - Once selected, the target element shows the assigned value (and its matching description)

Debugging and Resolving Issues

Any problems with resolving the creation of your value list are usually easily resolved by debugging your
code via CL_FDT_APPLICATION_EXIT=> GET_ELEMENT_VALUES.

To do this

1. Set a breakpoint in your own application exit method
IF_FDT_APPLICATION_SETTINGS=>GET_ELEMENT_VALUES

2. In transaction SE24, enter the class CL_FDT_APPLICATION_EXIT and press the Test (Execute in
Test Environment) button

3. Select the method GET_ELEMENT_VALUES
4. Put the ID of your target element Data Object into the parameter IV_ID
5. Press Execute
6. And start debugging!

Taking the technique further
This technique could be extended to provide the same capabilities for multiple target elements with their

appropriate source decision tables; for example by using custom attributes to hold the IDs of the target

element, source decision table, value column and description column.

 15

Related Content
Customer-Defined Value Lists in SAP NetWeaver Decision Service Management

How to Kill Custom Code and Z-Tables

BRFplus Application Exits

Custom-Defined Attributes for BRFplus with SAP NetWeaver Decision Service Management

ID-100184516.jpg
http://scn.sap.com/community/brm/blog/2013/08/31/how-to-kill-custom-code-and-z-tables
http://scn.sap.com/docs/DOC-4564
http://scn.sap.com/docs/DOC-47938

 16

Copyright

© 2015 SAP SE or an SAP SE affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP SE.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP SE and its distributors contain proprietary software components
of other software vendors. National product specifications may vary.

These materials are provided by SAP SE and its affiliated companies (“SAP SE Group”) for informational
purposes only, without representation or warranty of any kind, and SAP SE Group shall not be liable for
errors or omissions with respect to the materials. The only warranties for SAP SE Group products and
services are those that are set forth in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an additional warranty.

SAP SE and other SAP SE products and services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP SE in Germany and other countries.

Please see
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
for additional trademark information and notices.

