Demand-side Energy Management Systems for Manufacturing
Informatik 2010, Leipzig

SAP Research Center Dresden
Dr. Michael Ameling
September 28th, 2010
Agenda

1. Introduction
2. Scenario
3. Concept
4. Prototype
5. Conclusion
Section One

Introduction
Sustainability

- Economic View
- Ecologic View
- Social View
Introduction
Energy Monitoring & Management

Energy
- Water
- Air
- Gas
- Electricity
- Steam

Goals
- Benchmarking of energy consumption
- Reducing energy consumption
- Reducing energy loss (distribution)
- Avoiding energy peaks (in demand)
- Energy availability (resource) planning
- Increasing efficiency

key challenge: intermittency of RES [8]

Utilities
Supported by AMI, Smart Grid

Energy Production
Energy Storage
Energy Distribution
Energy Consumption

private & industrial consumer

“You can’t manage what you don’t measure”
Production
Paradigm Change & Role of ICT

Efficiency Nowadays
- Maximum gain from minimum capital
- Maximum gain from minimal resources

Savings
- Industrial production savings potential: 25 - 30% [1]
- Energy savings potential (by 2020): 25% (95 Mtoe) [2]
- Industry ≈ 30% of Europe’s primary energy consumption
 - Savings of up to 65% reasonably expected [2]

ICT Role
- ICT reducing carbon emission (by 2010) potential: up to 970 million tons (global)
 - Improved motor systems, industrial process optimization [3]
- ICT-optimized logistics (e.g.: optimized transport routes, networks, inventory reduction) [3]
 - Reduction in transport emission: up to 16%
 - Reduction in storage emissions globally: 27%
Energy Consumption and Savings Potential
Examples in Manufacturing

Electricity Consumption & Production
- Europe’s share of global primary energy consumption: 18% (10,900 Mtoe4) in 2006
 - equals annual increase of 2.4 %.

Electricity Usage
- Electricity in Germany: 15% (528 TWh) of primary energy [5]
 - Industry share: 47% (2/3 electrical drives, 1/3 heating and lighting

Compressed Air
- Compressed air: 10% of industrial energy consumption (> 80 TWh/year) [6]
 - 321,000 compressors (10 -300 kW) installed in Europe [5]

Strategies and Potential for Manufacturing:

<table>
<thead>
<tr>
<th>Optimization Strategy</th>
<th>Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Optimization</td>
<td>25 - 30%</td>
</tr>
<tr>
<td>Optimized Logistic</td>
<td>16%</td>
</tr>
<tr>
<td>Integrated Process Chains</td>
<td>30%</td>
</tr>
<tr>
<td>Development of New Products</td>
<td>10 - 40%</td>
</tr>
<tr>
<td>Intelligent Motor Drives</td>
<td>20 - 40%</td>
</tr>
<tr>
<td>Alignment with Best Performers</td>
<td>15%</td>
</tr>
</tbody>
</table>
Section Two

Scenario
ADiWa - Work Package A4
Objective and Application Scenario

Overall Objective ADiWa
- From Internet of Things towards intelligent business processes
 - Usage of all IoT information relevant to a process
 - Flexible formation and dynamic adjustment of processes in companies

Overall Objective ADiWa WP A4
- Lean and green production and logistics
 - Provide a concept for reaching sustainability
 - Transparency in production and logistics
 - Efficient energy management

Application Scenarios
- Manufacturing in the SAP Research Future Factory
 - Demand-side energy management
 - Dynamic routing
Production of different kind of fridge magnets
- Several logos
- Several insertions (thermometer, sharpener)
- Any combination with different production plan

Resources
- Workers
- CNC Mills
- Drills
- Assembly workplaces
- Quality check workplaces

Energy Resource
- Units in hour
SAP Future Factory
Energy Consumption at Process Level

Provisioning ➔ Drilling ➔ Milling ➔ Assembling ➔ Packaging

0.327 kW/h
ADiWa - Work Package A4
Use Case Demand-Side Energy Management

Stock Market (e.g.: EEX¹)

- Fossil Power
- Green Power

Weather Data
- Day related
- Year related

Prozesse
- Drilling
- Milling
- Assembling

Management
- Order B

¹EEX – European Energy Exchange
Section Three

Concept
Section Four

Prototypes
Future Factory
Energy Meter Distribution in Production Line
Prototype
Energy Monitoring Dashboard

Presentation Layer

Logic & Analytic Layer

Persistency Layer

Device Abstraction Layer

Hardware

Xcelsius

Silverlight

BOBJ Explorer

ABAP/ Java + TREX Analytics

SAP TREX

MDI

PLOGGS

NZR SEM

easyMeter

E+H

Mitsubishi

© SAP 2010 / Page 18
Prototype - Energy Monitoring Dashboard

Cumulated View of Assets

Energy Information

Historical vs. Current

<table>
<thead>
<tr>
<th>Component</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulated View All</td>
<td></td>
</tr>
<tr>
<td>3D Printer</td>
<td>Mitsu.</td>
</tr>
<tr>
<td>Milling Machine</td>
<td>Mitsu.</td>
</tr>
<tr>
<td>Milling Machine 2</td>
<td>Mitsu.</td>
</tr>
<tr>
<td>Drill</td>
<td>Mitsu.</td>
</tr>
<tr>
<td>Terminal</td>
<td>Mitsu.</td>
</tr>
<tr>
<td>Laptop</td>
<td>Plogg</td>
</tr>
<tr>
<td>Touch Panel</td>
<td>Plogg</td>
</tr>
<tr>
<td>Pump</td>
<td>Plogg</td>
</tr>
<tr>
<td>NanoServer</td>
<td>Plogg</td>
</tr>
</tbody>
</table>

Total Power Consumption

<table>
<thead>
<tr>
<th>Component</th>
<th>Total Consumption</th>
<th>Current Consumption</th>
<th>Energy Meter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Printer</td>
<td>4557 kWh</td>
<td>880 Watt</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Milling Machine</td>
<td>2295 kWh</td>
<td>281 Watt</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Milling Machine 2</td>
<td>20 kWh</td>
<td>0 Watt</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Drill</td>
<td>6435 kWh</td>
<td>2 Watt</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Terminal</td>
<td>425 kWh</td>
<td>36 Watt</td>
<td>Mitsubishi</td>
</tr>
<tr>
<td>Laptop</td>
<td>213 kWh</td>
<td>18.63 Watt</td>
<td>plogg</td>
</tr>
<tr>
<td>Touch Panel</td>
<td>215 kWh</td>
<td>41.42 Watt</td>
<td>plogg</td>
</tr>
<tr>
<td>Pump</td>
<td>1658 kWh</td>
<td>154.76 Watt</td>
<td>plogg</td>
</tr>
<tr>
<td>NanoServer</td>
<td>213 kWh</td>
<td>18.63 Watt</td>
<td>plogg</td>
</tr>
</tbody>
</table>

Consumer: 3D Printer /// **Total Power Consumption: 880** /// **Number of Devices Online: 4** /// **Heavy**
Literature (selection)

[2] Twenty Solutions for Growth and Investment to 2020 and Beyond, 2008

Thank you!
<table>
<thead>
<tr>
<th>Grid</th>
</tr>
</thead>
</table>

© SAP 2009 / Page 24
Definition and Halftone Values of Colors

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Blue</td>
<td>RGB 4/53/123</td>
</tr>
<tr>
<td>SAP Gold</td>
<td>RGB 240/171/0</td>
</tr>
<tr>
<td>SAP Light Gray</td>
<td>RGB 204/204/204</td>
</tr>
<tr>
<td>SAP Gray</td>
<td>RGB 153/153/153</td>
</tr>
<tr>
<td>SAP Dark Gray</td>
<td>RGB 102/102/102</td>
</tr>
</tbody>
</table>

Primary Color Palette

- **100%**
 - SAP Blue: RGB 4/53/123
 - SAP Gold: RGB 240/171/0
 - SAP Light Gray: RGB 204/204/204
 - SAP Gray: RGB 153/153/153
 - SAP Dark Gray: RGB 102/102/102

Secondary Color Palette

- **85%**
 - SAP Blue: RGB 68/105/125
 - SAP Gold: RGB 96/127/143
 - SAP Light Gray: RGB 125/150/164
 - SAP Gray: RGB 152/173/183
 - SAP Dark Gray: RGB 180/195/203

- **70%**
 - SAP Blue: RGB 96/127/143
 - SAP Gold: RGB 125/150/164
 - SAP Light Gray: RGB 152/173/183
 - SAP Gray: RGB 180/195/203
 - SAP Dark Gray: RGB 21/101/112

- **55%**
 - SAP Blue: RGB 125/150/164
 - SAP Gold: RGB 152/173/183
 - SAP Light Gray: RGB 180/195/203
 - SAP Gray: RGB 21/101/112
 - SAP Dark Gray: RGB 98/146/147

- **40%**
 - SAP Blue: RGB 152/173/183
 - SAP Gold: RGB 180/195/203
 - SAP Light Gray: RGB 21/101/112
 - SAP Gray: RGB 98/146/147
 - SAP Dark Gray: RGB 85/118/48

Tertiary Color Palette

- **100%**
 - Cool Green: RGB 73/108/96
 - Ocher: RGB 129/110/44
 - Cool Red: RGB 132/76/84
 - Warning Red: RGB 158/48/57

- **85%**
 - Cool Green: RGB 101/129/120
 - Ocher: RGB 148/132/75
 - Cool Red: RGB 150/103/110
 - Warning Red: RGB 158/48/57

- **70%**
 - Cool Green: RGB 129/152/144
 - Ocher: RGB 167/154/108
 - Cool Red: RGB 169/130/136
 - Warning Red: RGB 158/48/57

- **55%**
 - Cool Green: RGB 156/174/168
 - Ocher: RGB 186/176/139
 - Cool Red: RGB 188/157/162
 - Warning Red: RGB 158/48/57

- **40%**
 - Cool Green: RGB 183/196/191
 - Ocher: RGB 205/197/171
 - Cool Red: RGB 206/183/187
 - Warning Red: RGB 158/48/57